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Abstract

Environmental inequalities, such as unequal exposure to pollution and climate risks, per-
sist across racial and socioeconomic groups in the United States. This paper re-examines
the role of the Residential Security Maps created by the Home Owners’ Loan Corporation
(HOLC) in the 1930s, which graded neighborhoods according to perceived mortgage risk
and have been widely linked to long-run racial segregation and environmental disadvantage.
A common view holds that these maps not only reinforced residential segregation but also
directly shaped the spatial distribution of environmental hazards, including air pollution,
flood risk, and extreme heat. We evaluate this claim using a causal framework that combines
machine-learning predictions of counterfactual HOLC grades in unmapped cities with a spa-
tial difference-in-differences design. Our results confirm that the maps modestly increased
racial sorting and segregation, consistent with prior work. However, we find no evidence
that HOLC mapping independently affected the siting of environmental or climatic hazards.
Differences in air pollution, flood risk, heat exposure, and mortality across historical grades
are quantitatively similar in mapped and unmapped cities. These findings suggest that
contemporary environmental inequalities primarily reflect residential sorting and discrimi-
natory practices that operated broadly across U.S. cities, rather than an additional siting

effect uniquely induced by the HOLC maps, which we do not detect.
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1 Introduction

Environmental burdens—including pollution, climate risks, and associated health hazards—are
unevenly distributed across geographic areas, racial groups, and income levels. A large body
of work has shown that Black, Hispanic, and low-income populations in the United States
are exposed to higher levels of fine particulate air pollution (Currie et al., 2023; Jbaily et al.,
2022; Sager and Singer, 2025). Similarly, climate-related hazards disproportionately affect these
communities, and climate change is likely to intensify such hazards over the coming decades. For
example, urban heat islands have been found to affect non-white and lower-income populations
disproportionately (Hsu et al., 2021; Benz and Burney, 2021), and flood risks are higher in
historically marginalized neighborhoods (Wing et al., 2022). Yet, the origins of these correlations
remain debated.

A frequent claim in policy and popular accounts is that the Residential Security Maps drawn
in the 1930s by the Home Owners’ Loan Corporation (HOLC) played a central role in shaping
these disparities. As part of a federal mortgage initiative, HOLC produced color-coded maps
for more than 200 U.S. cities to summarize the perceived financial risk of residential neighbor-
hoods, assigning grades from A (lowest risk) to D (highest risk). These maps—Ilater referred
to as “redlining” maps—have been widely interpreted as having reduced credit access, reinforc-
ing residential segregation and long-run neighborhood disadvantage. The policy has received
substantial attention in the media (Plumer and Popovich, 2020; McCormick, 2022), among pol-
icymakers,' and in academic research. A growing body of studies outside economics documents
strong correlations between historical HOLC risk grades and present-day environmental and
health outcomes, while work exploiting local grade boundaries, such as Aaronson et al. (2021),
has provided credible causal evidence of residential sorting. Much of the remaining literature,
however, is descriptive and does not formalize an explicit counterfactual. In this paper, we
contribute by proposing a complementary identification strategy that constructs a city-level
counterfactual using unmapped cities around the HOLC population threshold, allowing us to
reassess the causal effects of historical risk grades on contemporary environmental and health
outcomes.

In this paper, we examine whether the documented correlation between historical neigh-
borhood risk grades and contemporary environmental and health outcomes reflects a causal
relationship. Figure 1 replicates the pattern that has been documented in several studies: the
worse the neighborhood was graded in the 1930s, the higher the flood and heat hazard. Also, air
pollution is higher in the worse graded neighborhoods. This pattern in environmental burden is
also mirrored in mortality: the worse the historical risk grade, the lower the age at death.

This historical housing policy can affect environmental inequalites by sorting (households
moving to areas with existing environmental hazards) or siting (the placement of environmental

hazards in disadvantaged neighborhoods);* we investigate both of these channels. Our analysis

'For example, Senator Elizabeth Warren (D, MA) has proposed federal subsidies for first-time homebuyers in
formerly redlined neighborhoods (see https://elizabethwarren.com/plans/safe-affordable-housing).

2Residential sorting leads to environmental disparities, as higher-income individuals are more willing to pay for
amenities like clean air, resulting in wealthier communities with better environmental quality, while lower-income
households tend to reside in more polluted areas. If income distributions differ across racial groups, this sorting
mechanism can create a correlation between pollution exposure and race (Banzhaf and Walsh, 2008).


https://elizabethwarren.com/plans/safe-affordable-housing

Figure (1) Environmental outcomes in 2020 across HOLC grades in treated cities
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Notes: Standard errors are clustered at the city level. Bars reflect 95% confidence intervals.

has three core components. First, we use the 1930 full-count census to train a machine-learning
model to predict which areas received different risk grades by the Home Owners’ Loan Corpo-
ration (HOLC) and then use this model to predict the risk grade in areas of cities that were not
mapped by HOLC to create a clean control group of comparable neighborhoods in untreated
cities (Hynsjo and Perdoni, 2024). Second, we use a spatial difference-in-differences approach
to show that the between-neighborhood differences across treated and untreated cities are bal-
anced prior to the treatment. Third, we examine sorting and siting over the short and long
run, combining census data since the 1940s with property-level climate hazard data, air pollu-
tion reanalysis data, high-resolution satellite imagery, and neighborhood-level mortality data to
analyze disparities in pollution, climate, and health risks today.

Our results show that the Residential Security Maps modestly amplified racial sorting and
segregation in treated cities. Consistent with earlier findings (Aaronson et al., 2021; Hynsjo
and Perdoni, 2024), we document that the introduction of HOLC grades increased differen-
tial residential mobility across neighborhoods, primarily through higher out-migration of white
households from lower-graded areas. These effects are economically meaningful but limited in
magnitude, and they build on pre-existing differences across neighborhoods that were already
present before the policy. Overall, the evidence suggests that the maps reinforced residential seg-

regation patterns by coordinating housing market behavior rather than fundamentally reshaping



urban demographics.

In contrast, we find little evidence that the policy had an independent effect on the siting of
environmental and climatic hazards. While lower-graded neighborhoods are consistently exposed
to higher levels of air pollution, flood risk, heat exposure, and worse mortality outcomes, these
gradients are quantitatively similar in mapped and unmapped cities. Across a wide range of
outcomes—including industrial activity, proximity to polluting highways, urban infrastructure,
greenspace, pollution measures, climate hazards, and neighborhood-level mortality—we do not
detect additional environmental burdens attributable to the HOLC maps themselves. Taken to-
gether, these findings indicate that the Residential Security Maps did not generate new patterns
of environmental siting beyond those arising from more localized discriminatory practices and
policies that operated in both treated and untreated cities.?

The paper is structured as follows: Section 2 provides background about the Residential
Security Maps , Section 3 reviews the previous literature and describes the paper’s contribution
to the literature, Section 4 introduces the data and Section 5 describes our empirical strategy,

and Section 6 discusses the results.

2 Historical background

In response to the mortgage crisis of the Great Depression, the Roosevelt Administration estab-
lished the Home Owners’ Loan Corporation (HOLC) in 1933 to refinance distressed mortgages
on more favorable terms. By 1936, the agency had assisted over one million homeowners and
held a substantial share of outstanding urban mortgages (Jackson, 1980). After completing its
refinancing program, HOLC increasingly focused on assessing repayment risks and developing
standardized appraisal techniques to stabilize property values and protect federal real estate in-
vestments (Woods, 2012; Michney, 2023). Policymakers and housing experts at the time empha-
sized that neighborhood conditions—rather than borrower characteristics alone—were central
to the long-run performance of mortgage portfolios.

This shift in focus led to the launch of the City Surveys program in 1935. Facing time and
resource constraints, HOLC confined the surveys to cities with populations above 40,000 and ul-
timately produced standardized Residential Security Maps and accompanying Area Descriptions
for 239 cities. Although the program formally concluded in 1940, most maps were completed by
mid-1938. Our empirical analysis exploits this population threshold and the resulting cross-city
variation in map coverage as an exogenous historical shock.

To construct the Residential Security Maps, HOLC hired local real estate professionals and
appraisal contractors to assess neighborhood-level lending risk (see Figure Al for an example).
Assessors grouped residential areas into one of four categories based on housing characteris-
tics—such as age, quality, occupancy, and prices—as well as non-housing attributes, including
race, ethnicity, and immigration status. Each neighborhood received a summary grade rang-
ing from A (lowest perceived risk) to D (highest perceived risk), visualized using a color-coded
scheme: green for A, blue for B, yellow for C, and red for D. This practice later became known

as “redlining.”

3Examples include zoning regulations (Shertzer et al., 2022), racial housing covenants (Sood and Ehrman-
Solberg, 2023), and blockbusting.



Beyond summarizing housing conditions and demographics, the Area Descriptions frequently
referenced environmental and land-use features believed to affect neighborhood stability. Con-
temporary appraisal manuals and professional guidelines treated proximity to parks, traffic cor-
ridors, and industrial activity as relevant determinants of residential desirability, often alongside
explicitly racialized criteria. Green space was described as a protective buffer against commer-
cial or industrial encroachment, while wide roads or parkways were viewed as barriers capable
of containing the spread of “inharmonious uses.” At the same time, industrial hazards and pol-
lution were commonly discussed within the same evaluative framework as racial and ethnic
“infiltration,” reflecting prevailing ecological theories of neighborhood change.

These appraisal practices did not necessarily reflect an explicit federal intent to shape envi-
ronmental outcomes. However, by codifying neighborhood desirability in ways that linked race,
land use, and perceived environmental risk, the HOLC maps might have influenced how public
and private actors understood appropriate locations for residential investment and, conversely,
for industrial uses. As zoning decisions and siting choices responded to these classifications,
low-graded neighborhoods may have become disproportionately exposed to environmental dis-
amenities.

These links between appraisal, land use, and environmental conditions were not unique to
HOLC. The Federal Housing Administration’s Underwriting Manual explicitly classified the
presence of racial and ethnic minorities alongside physical and environmental hazards when
evaluating neighborhood risk. The manual described proximity to green space as a protective
factor, noting that “a location close to a public park or area of similar nature is usually well
protected from infiltration of business and lower social occupancy coming from that direction,”
while major roads or parkways were seen as barriers that could limit the expansion of “inharmo-
nious uses.” In contrast, neighborhoods lacking such buffers were viewed as more vulnerable to
industrial encroachment. As a result, contemporaneous zoning and land-use regulations often
operated to shield high-graded, predominantly white neighborhoods from polluting or environ-
mentally hazardous activities, while implicitly channeling such uses toward lower-graded areas.
California EPA (2021) documents how this regulatory configuration encouraged the relocation
of polluting land uses into neighborhoods assigned unfavorable risk grades. Similarly, Rothstein
(2017) argues that zoning laws “attempted to protect white neighborhoods from deterioration by
ensuring that few industrial or environmentally unsafe businesses could locate in them,” leaving
polluting industries with limited options other than siting near African American communities.
Taken together, these mechanisms suggest that HOLC’s Residential Security Maps, even if not
designed to govern environmental policy directly, could have contributed to the disproportionate
concentration of industrial facilities and pollution in low-graded neighborhoods.

The broader economic impact of the Residential Security Maps depends on how widely they
circulated beyond HOLC itself. Although the maps were formally classified as confidential,
historical evidence suggests that their content and methods were far from obscure. Hundreds of
consultants participated in their creation, thousands of local actors were contacted during the
surveys, and HOLC officials reported sustained demand for access from practitioners familiar
with the project (Michney, 2022). Selected maps were displayed at professional workshops, and

the underlying appraisal techniques were promoted in trade journals (Winling and Michney,



2021). Rather than being fully secret or fully public, the maps functioned as an “open secret”
within housing and real estate circles.

This interpretation is consistent with recent empirical evidence documenting persistent effects
of red and yellow risk grades on racial segregation, economic opportunity, and intergenerational
outcomes (Aaronson et al., 2021, 2023; Hynsjo and Perdoni, 2024). Yet, despite growing interest
in the environmental dimensions of redlining, existing studies have not been able to credibly
assess the causal impact of redlining on pollution exposure and environmental quality, largely
due to the absence of appropriate control groups. Our empirical strategy is designed to address
this limitation by leveraging quasi-experimental variation in HOLC map coverage to isolate the

environmental consequences of this historically influential classification system.

3 Contributions to related literature

This analysis contributes to the literature in several ways. Previous studies on environmental
inequality have focused on two broad roots for why marginalized communities bear a larger
environmental burden.? Tt could be either due to household sorting or (dis)amenity siting. Our
study provides a novel test of (dis)amenity siting but also contrasts this with the effects on
residential sorting.

Numerous studies on household sorting demonstrate that environmental inequality can emerge
as marginalized communities tend to move into more polluted areas. Or, conversely, that priv-
ileged communities move away from polluted areas. In a seminal study, Banzhaf and Walsh
(2008) examine residential sorting due to the entry and exit of firms reporting to the Toxic Re-
lease Inventory (TRI)®. They find clear evidence that, subsequent to a firm entry, surrounding
neighborhoods become poorer on average, leading the authors to conclude with the notion that
“households vote with their feet”. Depro et al. (2015) also find evidence for household sorting
in Los Angeles due to differential cleanup efforts in face of a cancer risk. They point out that
Hispanics have a lower marginal willingness to pay to avoid cancer risk. Bakkensen and Ma
(2020) focus on residential sorting as a result of different flood risk in Florida. Based on house
sales in a boundary discontinuity design, they find clear evidence of low-income and minority
households sorting into higher flood risk zones. Christensen and Timmins (2022) examine how
sorting takes place in practice. In a randomized experiment, testers with similar preferences
and budget were assigned to an advertised listing by a real estate agent. Their findings reveal
that minority testers were significantly more likely to be steered toward inferior neighborhoods
that exhibit higher pollution levels among other characteristics. Heblich et al. (2021) examine
the long-run impact of historical industry locations on neighborhood sorting in England. They
find that during the Industrial Revolution in England, winds transported air pollution towards
the East side of industrial cities, making these areas less attractive. This exogenous disamenity
leads to residential sorting which increased economic deprivation in these affected areas. Beyond
the high-income countries, Chen et al. (2022) examine the impact of changing air pollution in

Chinese counties. They exploit 5-year average thermal inversions as IV that amplify air pollu-

4For reviews of research on environmental justice, including the mechanisms driving these disparities, see
Banzhaf et al. (2019) and Cain et al. (2024).
5We also rely on this data source in the present study.



tion and find substantial migration outflows as a consequence. The effects are predominantly
driven by younger, high-education individuals, which changes the local population composition.
Anderson (2020) examines health outcomes along highways in Los Angeles. He finds that air
pollution from traffic only occurs on the downwind side and finds that mortality is elevated
by 3-5%. Crucially, he compares property prices across both sides of the highway and finds
that they are balanced. This suggests that, in this specific case of pollution from LA high-
ways, households are not aware of the role of the wind direction in diffusing air pollution. This
finding reconciles with previous literature which shows that the new placement of salient urban
disamenities, such as waste sites or factories, affects surrounding property prices (Farber, 1998;
Schiitt, 2021, for reviews). However, invisible hazards are often underestimated due to limited
information (Barwick et al., 2024; Moulton et al., 2024). Hausman and Stolper (2021) shows
that, even under uniformly limited information about pollution, large exposure differentials can
arise through sorting due to the correlation of salient disamenities, such as smoke stacks, with
hidden pollution. Overall, the literature has predominantly examined how the proportion of
marginalized communities changes following the introduction of new pollution sources. In con-
trast, our research examines how siting decisions react in the aftermath of a sorting shock. We
also examine whether the policy had repercussions for home affordability and home ownership
that drive the initial sorting shock.

Studies on strategic siting of polluting factories find mixed evidence regarding the role of
race and income in influencing siting decisions. Wolverton (2009) focuses on firms reporting to
the TRI. She contrasts the local population characteristics long after the firm has been opened,
common in the research field, with the characteristics at the time of the siting itself. The results
show that long after the firm has opened, both race and income correlate with the firm location.
In contrast, at the time of the siting, only income correlates with a firm location, while race is
insignificant. This is consistent with no differential siting based on race, but, again, suggests that
marginalized households sort into the hazardous neighborhoods. Silva et al. (2016) examines the
local population composition at the time of entry and exit of US Texan firms reporting to the
TRI. Controlling for factor prices and other variables influencing firm siting decisions, the authors
find that polluting firms are more likely to locate into areas with higher share of nonwhites. Our
study contributes to this line of research with a new test of disamenity siting decisions. Clay
et al. (2025) examine fossil fuel siting and subsequent sorting in the US for the periodfind no
evidence that fossil fuel plants were overly sited into African American neighborhoods.

We also contribute to the strand of research that has examined the role of historical redlining
policies for today’s environmental and health outcomes.® The recent digitization and open avail-
ability of HOLC maps has enabled a rapidly expanding body of quantitative research—primarily
outside economics—documenting strong correlations between historical risk grades and contem-
porary environmental exposures and health outcomes, including air pollution, fossil fuel power
plants, heat stress, tree canopy, biodiversity, and a range of morbidity and mortality measures
(Lane et al., 2022; Locke et al., 2021; Nardone et al., 2020, 2021; Tessum et al., 2019; Namin
et al., 2020; Hsu et al., 2021; Cushing et al., 2022). While this literature provides compelling

5Several studies investigate the legacy of redlining: Aaronson et al. (2021); Fishback et al. (2023); Hynsj6 and
Perdoni (2024). Minano-Manero (2024) studies how enhancing waterfronts and increasing tree canopy led to the
upgrading of formerly redlined areas using geographic variation in tree plagues as an instrument.



descriptive evidence of persistent environmental inequality, it remains unclear whether these
patterns admit a causal interpretation. Neighborhoods assigned different HOLC grades already
differed systematically prior to the policy along dimensions related to housing quality, land use,
and residential location, raising concerns that unaccounted-for pre-existing differences may bias

estimates.

4 Data

HOLC maps. We incorporate HOLC grades using the digitized Residential Security Maps
provided by the Mapping Inequality initiative, a project of the Digital Scholarship Lab at the
University of Richmond (Nelson et al., 2023). The files contain maps for 216 cities across 39
states.” We convert the neighborhood polygons originally traced by HOLC into a regular grid of
hexagonal cells, which constitute our primary spatial unit of observation. The use of a uniform
grid facilitates comparison across space and simplifies the construction of counterfactual HOLC
maps in control cities. Each hexagon has an area of 0.025 square kilometers (7.3 acres) and a
side length of approximately 100 meters, a scale comparable to a typical city block in grid-plan
cities such as New York City or Chicago.® A hexagon is assigned a HOLC grade if a single color
occupies at least 75% of its surface.” This spatial transformation has a negligible impact on the
overall distribution of grades (Hynsjo and Perdoni, 2024).

Historical census data. To study whether HOLC redlining constituted a shock to resi-
dential sorting and segregation, we assemble population data at the hexagon level from 1910 to
2010. For the period 1910-1940, we rely on geocoded full-count census records (Hynsjo and Per-
doni, 2024). Heads of household are geocoded using street addresses from the proprietary census
versions provided by ancestry.com and IPUMS (Ruggles et al., 2024). Addresses are cleaned
following established practices in the spatial history literature (Logan and Zhang, 2018), and
geographic coordinates are assigned using ESRI StreetMap Premium (2024), which combines
parcel centroids and street locations. The resulting coordinates allow us to aggregate individual
observations to our hexagon grid and construct neighborhood-level measures of demographic
composition and housing characteristics. Consistent with prior work, HOLC grades reflect pre-
existing socioeconomic patterns: racial composition, homeownership, property values, and rents
vary systematically across grades (Hynsjo and Perdoni, 2024). After 1940, we rely on publicly
available census data. We obtain tract-level measures for 1960-2010 from the National Historical
Geographic Information System (NHGIS) (Manson et al., 2021). Census tracts are the smallest
geographic units consistently identifiable over this period, but they are larger and more hetero-
geneous than our hexagons.'’ We convert tract-level data to the hexagon level by assigning each
hexagon the characteristics of the census tract containing its centroid.

We exploit recently developed crosswalks linking individuals across census decades to study

"We use the version of the digitized maps released in December 2023. Relative to earlier releases used in the
recent literature, this update includes twelve additional HOLC City Survey Maps (Nelson et al., 2023).

8The side length corresponds to roughly 328 feet.

90ur results are robust to modest variations in this threshold. Given the small size of each spatial unit, the
majority of hexagons (80.9%) contain only one grade, while 7.6% do not meet the 75% criterion and are left
ungraded.

'The median census tract covers an area equivalent to 34 hexagons.



Figure (2) Example, Pittsburgh PA
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Notes: Example of the data curation for Pittsburgh, PA: panel a) shows a digitized residential security map
in 1937, panel b) shows the share of black population in the neighborhoods in 1930 according to the full-count
census, panel ¢) and panel d) show the contemporaneous environmental and climatic risks of flood and heat in
the neighborhoods in 2020.

residential mobility and longer-run individual outcomes. In particular, we use the IPUMS Multi-
generational Longitudinal Panel (Ruggles et al., 2025) to compare individual residential locations
between 1930 and 1950. The same linking initiative allows us to match census respondents to So-
cial Security death records.!! This information enables us to observe age and place of residence
at death for individuals who lived in our cities of interest between 1930 and 1950, complementing
our analysis of residential sorting with evidence on subsequent mobility and persistence.
Environmental and climatic hazards. Our preferred measure of environmental and
climatic hazards—flood, heat, and fire risk—comes from a proprietary dataset by First Street

Foundation (2022). This dataset provides property-level risk assessments on a scale from 1

"The death records are public and disseminated by the National Archives and Records Administration. A
researcher-friendly version is provided by Hollingsworth et al. (2024).



(low risk) to 10 (high risk) for 142 million properties across the US The risks are climate-
adjusted, reflecting 30-year projections based on the IPCC CMIP5 RCP4.5 model. The data
integrates publicly available inputs at 30m resolution (e.g., satellite imagery, temperature data)
with proprietary inputs to create address-level hazard estimates. For example, Figure 2, panel
c) and d) illustrate flood risk and heat risk aggregated from the property-level to our hexagon
grid, which is our unit of analysis. Light blue (red) shading indicates low risk and dark blue
(red) shading indicating high risk. The measure combines physical risk with information on
local mitigation and adaptation efforts, including “gray” infrastructure like levees and pumps,
and “green” solutions like wetland restoration.

Air Pollution. As two other dimensions of environmental hazard, we leverage gridded air
pollution data that are typically emitted from combustion processes like industrial production,
traffic or energy generation. To examine a widely used measure of air pollution, particulate
matter PMa 5 concentration, we link average grid values from Shen et al. (2024) to our hexagon
grid. The P M, 5 values come from a reanalysis project that combines ground-station and satellite
measurements and a chemical transport model. It encompasses the whole US at 0.01° x 0.01° (ca.
1km x 1km) resolution between 1998-2022. For nitrogen dioxide NOs concentrations, we rely
on the satellite product Copernicus Sentinel-5 Precursor TROPOspheric Monitoring Instrument
(TROPOMI).'? Is is delivered at resolution of 0.01° x 0.01° between 2019-2022. This data is
reprocessed by the remote sensing engineers to ensure data accuracy. NOsy concentrations are
expressed in units of Pmolec/ecm?2 which we scale by 1e6 for easier readability.

Siting of firms and urban disamenities. We unpack these siting results further by using
data from the EPA’s Toxic Release Inventory (TRI), which includes geocoordinates and annual
emission details from 1987 to 2023. In 2010, 21,810 facilities reported toxic pollutant emissions.
We define exposure as areas within a 300m radius of an industrial site, acknowledging that
pollutant exposure decreases with distance but can extend up to 1,600m (Currie et al., 2015).

In addition, we use the Global Human Settlement Layers (GHSL), which classify human
land use at a 10m resolution into 15 categories, including vegetation, roads, residential, and
commercial /industrial areas. From these data, we compute the share of each land use type

within a neighborhood.

5 Empirical strategy

Our identification strategy builds on the design proposed by Hynsjo and Perdoni (2024), who
exploit the population threshold determining whether a city was surveyed by the HOLC. While
their approach relies on a temporal difference-in-differences framework, we adopt a spatial
difference-in-differences design that replaces the time dimension with cross-sectional grade vari-
ation. This choice is dictated by data availability, as measures of pollution and climate hazards
are not observed prior to the introduction of the HOLC maps. As in Hynsjo and Perdoni (2024),
identification hinges on the fact that only cities with populations above 40,000 residents in 1930
were mapped. We therefore compare neighborhoods in mapped cities to observationally similar

neighborhoods in unmapped cities just below the threshold. To ensure comparability around

12We use Offline tropospheric NOz column number density as common in the literature.



the cutoff, we restrict attention to cities with populations between 30,000 and 40,000 residents
(control group) and between 40,000 and 60,000 residents (treated group) in 1930, resulting in a

near-symmetric sample of 48 control and 51 treated cities, as shown in Figure 3.'%

Figure (3) Population Threshold for HOLC City Surveys
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Notes: The graph shows the treatment status of cities according to their 1930 population. The horizontal green
line highlights the 40,000 people threshold. Blue points identify cities in the control group, while red ones
highlight treated cities.

5.1 Constructing Counterfactual HOLC Maps

To construct a credible counterfactual for unmapped cities, we use a machine-learning clas-
sification approach that replicates the HOLC grading process using pre-treatment data only.
Specifically, we train a random forest model on neighborhoods located in mapped cities, using
information from the 1930 full-count census (Ruggles et al., 2024), and then apply the trained
model to predict counterfactual HOLC grades in unmapped cities. The algorithm is thus used
to replicate HOLC appraisal decisions rather than to forecast post-treatment outcomes. By
construction, the training procedure excludes all post-treatment information, and control-city
neighborhoods are never used in model estimation.

Our approach can be interpreted as a matching strategy that provides an alternative to
synthetic control methods. Rather than constructing a weighted average of control units to
mirror treated units before the intervention, we classify neighborhoods according to predicted
HOLC grades. For each observed grade in treated cities, the corresponding control group consists
of neighborhoods in unmapped cities that the model predicts would have received the same grade
had they been surveyed. This procedure yields transparent and easily interpretable donor pools
for each grade, which can be visualized spatially, and shifts the burden of validity to out-of-

sample checks—such as parallel trends—that are not explicitly targeted during model training.

13T limit potential spillovers, we further restrict the control group to cities located at least 30 kilometers from
the nearest mapped city.
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The unit of analysis is a regular grid of hexagons, each with a side length of 100 meters and
an area of 0.025 km?, approximating the size of a typical city block. HOLC grades are taken
from the digitized Residential Security Maps provided by the Mapping Inequality initiative
(Nelson et al., 2023). A hexagon is assigned a grade if a single color covers at least 75% of its
surface. The classification model is trained on 47 socioeconomic and housing variables from the
1930 census, measured at multiple geographic scales—hexagon, surrounding buffers, city, and
county—yielding a total of 158 predictors. The construction of these measures relies on the
geocoded census data described in Hynsjo and Perdoni (2024).

We implement a random forest classifier (Breiman, 2001), which is well suited to this set-
ting given the nonlinearities, interactions, and class imbalance inherent in the HOLC grading
problem. Model performance is assessed using out-of-sample validation on a held-out test sam-
ple. The confusion matrix reported in Appendix Table 7?7 shows an overall accuracy exceeding
90%, with class-specific sensitivities above 90% for C and D grades. Importantly, the predicted
grade distribution closely mirrors the observed distribution, indicating that the algorithm does
not mechanically distort the prevalence of risk categories. Performance remains similarly high
when restricting the test sample to smaller cities, which are most relevant for our identification
strategy (Hynsjo and Perdoni, 2024).

Beyond predictive accuracy, the spatial structure of the predicted maps closely resembles that
of the original HOLC maps. Figure 4 compares observed and predicted grades for Pittsburgh,
PA, illustrating that the model reproduces compact and contiguous neighborhood boundaries
rather than fragmented or noisy patterns.'* Finally, we assess the drivers of the classifica-
tion using variable importance measures in Appendix Figure A3. Socioeconomic status and
housing market characteristics contribute most to predictive power overall, followed by racial
composition. When focusing on the lowest grade, racial composition becomes relatively more
important, consistent with historical accounts of HOLC appraisal practices. At the same time,
no single variable category dominates the model, underscoring that the algorithm captures the

multidimensional nature of the HOLC grading process rather than relying on any single input.

5.2 Differences-in-differences

Our estimation compares outcomes between neighborhoods with different grades within treated
cities to differences between neighborhoods that would have received the same grade within
counterfactual (unmapped) cities. In our baseline specifications, we consistently use predicted
grades to categorize hexagons both in the control and in the treatment group, in order to mitigate
any systematic bias due to remaining idiosyncrasies that could stem from the grades assigned
by the random forest in comparison cities in contrast to the true grades in treated cities.!”
Thus, our spatial difference-in-differences approach is based on pair-wise comparisons between

predicted grades (D vs. C, C vs. B, or D vs. B) and, in effect, utilizing this within-city grade

14Predicted maps for additional treated and control cities display similar coherence, supporting the use of the
classification algorithm as a tool for reconstructing plausible HOLC-style maps in cities that were never surveyed.
A complete collection of predicted maps can be accessed at this link: Predicted Maps

15To examine the sensitivity of our results to this choice, we also perform the analysis with observed grades in
treated cities versus predicted grades in comparison cities, with unchanges results.

11


https://bit.ly/holc_maps

Figure (4) Comparing observed vs. predicted grade in Pittsburgh, PA

(a) Observed grades (b) Predicted grades

LN N oo

Observed Grade - A . B [¢] . D Predicted Grade . A . B c . D

Notes: The figure compares the original digitized HOLC map for Pittsburgh, PA (Nelson et al., 2023) with the
corresponding neighborhood classifications generated by our random forest model at the hexagon level. Colors
indicate HOLC grades, with green denoting A, blue B, yellow C, and red D. Predicted maps for all cities in the
sample are available at Predicted Maps.

difference instead of a time dimension. We run the following regression equation:
yic = aLowGrade; + yTreated. + 3 (LowGrade; x Treated.) + . + 7@ + e;c

where y;. is an outcome, such as African American share or environmental hazard, in a neigh-
borhood hexagon i, in city ¢, LowGrade; indicates whether a hexagon is the lower (predicted)
grade among HOLC grades —i.e., D among D-C comparisons or D-B comparisons, C among
C-B comparisons—, Treated. = I(pop > 40k) indicates whether city ¢ was treated, . are fixed
effects for cities, z; are pre-determined neighborhood-level controls which may be optionally in-
cluded. Our coefficient of interest is the interaction of the two indicators LowGrade; x Treated,.,
which reflects the additional effect of being in a lower-graded neighborhood in the treated cities
relative to the lower-graded neighborhood in the control cities. The units are weighted by 1930

neighborhood population, and standard errors are clustered at the city level.

6 Results

6.1 Balancing and validation

We first validate whether neighborhood disparities were balanced before the policy in 1930
(after standardizing all variables). Table 1, panel (a), compares the neighborhood inequalities
for mapped cities, relative to comparison cities. The findings show that in comparison cities, D-
graded neighborhoods were more precarious and more segregated than C-graded neighborhoods,

with lower home ownership, lower house values, lower rent prices and a higher Black share. The
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coefficient on LowGrade; x Treated., however, indicates no statistically significant additional
differences between D- and C-neighborhoods in treated cities, suggesting disparities were similar

across treated and untreated cities before the policy. '

Table (1) Balance of neighborhood characteristics on D-C

Sample: 1930

Black share Ownership rate House value Rent price

(1) (2) (3) (4)

LowGrade x Treated 0.01 0.00 0.06 0.15
(0.21) (0.10) (0.10) (0.14)
LowGrade 0.62*** -0.38*** -0.49*** -0.27*
(0.14) (0.06) (0.07) (0.14)
Dependent variable mean 0.10 -0.13 -0.27 -0.06
Observations 18,665 18,657 18,615 18,615
City fixed effects v v v v
Census Year: 1920 1910
Black share Ownership rate Black share Ownership rate
(1) (2) (3) (4)
LowGrade x Treated -0.08 0.04 -0.09 -0.02
(0.20) (0.09) (0.17) (0.07)
LowGrade 0.51*** -0.42%** 0.42%** -0.36***
(0.13) (0.06) (0.11) (0.05)
Dependent variable mean 0.09 -0.09 0.08 -0.06
Observations 15,582 15,577 13,428 13,421
City f.e. v v v v

Notes: Regression of neighborhood characteristics in 1930, 1920, 1910, prior to redlining. The
observations are weighted by 1930 neighborhood population. Standard errors are clustered at the city
level. * 0.1 ** 0.05 *** 0.01

Panel (b) of Table 1 extend this balance test to the census years 1910 and 1920 for those
outcomes that are consistently obtained. Again, we find substantial differences between neigh-
borhoods: higher prevalence of African American communities and substantially lower home
ownership rate. And, again, any additional difference in treated cities are absent. In sum,
neighborhoods which would later be labeled low-grade, already had worse conditions in 1930,
1920 and 1910, but disparities were comparable between treated and untreated cities. This
could be interpreted as the result of other local forms of discrimination, happening before our
treatment, both in treated cities and untreated cities. These balance tests highlight a significant
challenge in the literature: Previous studies document consistently large imbalances on different
sides of a geographical grade boundary within treated cities (Aaronson et al., 2021; Fishback
et al., 2023). Addressing pre-existing differences (and trends in these differences) is difficult

without a counterfactual from unmapped cities: Aaronson et al. (2021), resort to focusing on

%Duye to a still pending data request at the US Census for the 1930 census data, this balance test includes
only cities within a symmetric bandwidth around the population cutoff, that is cities with population of 30-50
thousand. This results in 70 cities. For the remainder, we are able to examine all 99 cities between 30-60
thousand, where 51 are treated and 48 serve as comparison.
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the fraction of boundaries that satisfy balance using propensity score methods. However, this
might forgo a wide share of variation. By contrast, our approach allows to compare entire neigh-
borhoods, while acknowledging the pre-treatment difference between grades, using unmapped
cities as counterfactual.

To corroborate the comparability of neighborhoods, we, next, perform the balance test for C
vs. B neighborhoods, finding similar patterns. Table A2 shows that lower-graded neighborhoods
had lower home ownership, lower rents and house values and were more segregated across both

treated and comparison cities, with no significant differences for treated cities at the 95% level.

6.2 Sorting and housing prices

We now turn to the effects of the Residential Security Maps on individual residential mobility.
Table 2 presents results whether individuals moved out of their 1930 residence, proxied by their
zip-code. Columns 1 to 3 focus on short-term mobility between 1930 to 1950, while column 4 to
6 focus on mobility from 1930 until death: Overall, living in a low graded neighborhood, D vs.
C, is associated with lower mobility. Individuals are less likely to move by 5 percentage points.
This can be interpreted that marginalized individuals are “locked in” to their neighborhoods.
However, this differs for individuals who live in formerly redlined cities. The coefficient on
LowGrade x Treated is positive and significant in column 1 and 4. Living in a redlined city leads
to 2 percentage point higher mobility. Distinguishing between whites and blacks, the entire effect
seems to be driven by white inhabitant moving out of low graded neighborhoods. By contrary,

black inhabitants stay in the impoverished locations, which increases racial segregation.

Table (2) Sorting

Sample: Short-term sorting (1950) Lifetime sorting

All White Black All White Black
(1) (2) 3) (4) (5) (6)
LowGrade x Treated 0.022* 0.028** -0.069 0.023** 0.027*** -0.041
(0.013) (0.012) (0.044) (0.009) (0.010) (0.022)
LowGrade -0.050***  -0.042*** -0.143*** -0.051*** -0.046*** -0.118***
(0.008) (0.008) (0.034) (0.007) (0.008) (0.030)

Observations 691,988 664,429 27,559 204,880 191,643 13,237
City F.E. v v v v v v
Birth Year F.E. v v v

Notes: The table reports estimates of residential sorting across predicted HOLC grades in mapped
(treated) and unmapped (control) cities. The unit of observation is an individual. LowGrade is an
indicator for residence in a lower predicted HOLC grade within the relevant comparison (grade D
versus C). Treated equals one for cities surveyed by the HOLC and zero for comparison cities below
the population cutoff. Columns (1)—(3) measure short-term sorting using residential moves between
1930 and 1950. Columns (4)—(6) measure lifetime sorting by comparing residential location in 1930
to location at death, using Social Security death records. All specifications include city fixed effects;
columns (4)—(6) additionally include birth-year fixed effects. Standard errors are clustered at the city
level. *, ** and *** denote statistical significance at the 10, 5, and 1 percent levels.

The analysis on residential sorting thus far has focused on African American segregation.

While African American households have lower income on average, it is unclear whether the
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residential sorting also affects low-income households irrespective of their ethnic group status.
In the absence of households’ income records, we resort to census information on the prevalence
of home ownership reflective of household wealth, and the rent prices, reflective of affordability
and quality of housing. The corresponding regressions are shown in Table A5 for the share of
home ownership and in Table A4 for rent prices, each for an early period suggestive of short-
term effects (1940) and for the latest available period suggestive of a long-term effect. Home
ownership is consistently lower in lower graded neighborhoods. For instance, it differs by -6.7%
between D- relative to C-graded neighborhoods. Treated cities are not notably different, as
the coefficients on LowGrade x Treated indicate: All coefficients are statistically insignificant.
Regarding rent a similar picture emerges: Rents are lower in worse graded neighborhoods,
although this is statistically significant in 1990, but not in 1940. Treated cities do not differ
systematically. Overall, this suggests: First, the wealth and affordability does not deteriorate
noticeably due to redlining. But, second, the absence of statistically significant effects for income-
related neighborhood characteristics suggests that the residential sorting is less driven by an
income-gradient of households. Rather, the sorting decision of households is predominantly
driven by their ethnic group status. In other words, households do not just move into or out
of formerly redlined neighborhoods because of the mere housing conditions, which we find are
hardly affected.

6.3 Siting and environmental exposures

Having established that the practice of redlining was a shock to a neighborhood’s ethnic com-
position, we now focus on the siting of (dis-)amenities. Table 3 reports the findings within our
estimation framework, which uses spatial differences within cities and compares these across
cities near the population cutoff that differ in their treatment status. The findings show little
evidence that disamenities are disproportionately sited in treated cities.

Panel a) tests for disproportionate siting of industry (column 1 to 3) and highways (column 4
to 6). If the Residential Security Maps facilitated firms to place their factories strategically close
to marginalized communities, we would observe elevated presence of toxic plants in lower graded
neighborhoods of treated cities. This is not supported by our findings. The estimates shows
that, overall, lower-graded neighborhoods are more likely to have industrial areas (measured by
high-resolution Land Use and Land Classification maps) or industrial toxic plants. However,
this difference for mapped cities, reflected by the coefficient on LowGrade © Treated is never
statistically significant at the 95% level and often trends in the opposite direction. This finding
is consistent whether for different time periods from early industry measures in 1970s (general
differences +0.04 more likely to have industry vs. additional difference in redlined cities: -0.02),
as well as later industry measures up to 2010.

Another major environmental disamenity are highways. In Table 3, columns 4 to 6, the
results exhibit more highway presence in lower graded neighborhoods. The redlined D neigh-
borhoods are slightly more likely to have highway presence, as compared to yellow-lined C
neighborhoods. However, when comparing this first difference to the additional difference in
treated cities, the coefficient is statistically insignificant. This suggests that treated cities did

not have additional highway construction through the lower graded neighborhoods. As a re-
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sult, we cannot conclude that the Residential Security Maps amplified hazards through highway
construction.

In panel b) of Table 3, we examine the siting of further urban disamenities. The findings point
toward the same conclusion. In the 1970s, low-graded neighborhoods had higher commercial
building shares and a lower residential building share (column 1 and 2). The earliest measures
of greenness in 1985 point toward the fact that low graded neighborhoods had less vegetation
(column 3) which can absorb excessive rainfall, and diffuse heat and air pollution, sometimes
through fresh air corridors. Neither of these neighborhood disamenities is elevated in treated
cities, in contrast to the baseline comparison cities. These findings hold even when turning
to later outcomes measured using satellites in 2010 such as high-intensity urban areas, urban
built-up and greenness (columns 4 to 6).

Next, in panel c¢), we turn to environmental and climatic hazards. When examining air
pollution across neighborhoods in the two sets of cities, we find very similar evidence. Table 3
shows the double-difference estimates for particulate matter PMs 5 (column 1 to 3) and nitrogen
dioxide NOs (column 4).!'7 The estimates for the grade differences within both treated and
untreated cities are strong and statistically significant, suggesting that living in a low-grade
neighborhood comes with substantially higher air pollution. This difference, however, is similar
in treated cities: The double-difference estimate is again very close to zero. These findings
suggests that air pollution hazards are concentrated in more precarious and more segregated
neighborhoods. But, evenly so, both in treated cities as in untreated comparison cities.

Columns 5 and 6 extend to high-resolution address-level climatic hazards, such as flooding
and extreme heat.'® Again, low-graded neighborhoods bear a higher flood risk (+0.06) and a
higher heat risk (+0.27), both of which are statistically significant at the 5- or 10-percent level.
Mapped cities do not differ systematically with small coefficients in the case of flood, and wide
confidence intervals in the case of heat.

The findings up to here suggest that while the policy has amplified residential sorting, the
environmental hazards affect precarious households similarly no matter if a city was mapped by
the HOLC or remained unmapped. No matter which proxy for disproportionate pollutant siting
we use, we find evidence of the same pattern. The lower-graded side in each pair consistently
exhibits more environmental disamenities: more toxic plants, more highway, more commercial
areas, fewer residential areas and less vegetation cover. However, we rarely observe significant

differences between treated cities and the counterfactual differences in untreated cities.

1"Both pollutants are the result from combustion processes such as industry, traffic, electricity generation and
vast evidence that shows a clear link to health outcomes. As described in ?7, the air pollution data are from a
very recent reanalysis effort with both wide coverage and an unprecedented resolution, but the resolution is still
coarse as compared to our neighborhood hexagons which leads to a high R? in the estimation.

18These hazards capture not only the geophysical core risk, but also risks as a result of human decision-making
such as where to build protective infrastructure like levees, pumps or greenspace to absorb heat and excess rainfall
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Table (3) Siting
Panel a) Firms and highways
Outcome: Industry Highways
1970s 1990 2010 1970 1990 2005
(1) (2) (3) (4) (5) (6)
LowGrade x Treated -0.02 -0.03 0.01 0.00 0.00 0.01
(0.01) (0.03) (0.02) (0.01) (0.01) (0.04)
LowGrade 0.04*** 0.08*** 0.03** 0.01* 0.01** 0.05***
(0.01) (0.02) (0.01) (0.00) (0.00) (0.02)
Data LULC TRI TRI Highways Highways (Inter-
)State
Dependent variable mean 0.04 0.08 0.03 0.01 0.02 0.25
Observations 30,850 30,845 30,845 30,850 30,845 30,845
City fixed effects v v v v v v
Panel b) Land use and greenness
Period: Early Later
Year: 1970 1985 2010
Commercial Residential = Greenness High- Built-up Greeness
intensity
(1) (2) (3) (4) (5) (6)
LowGrade x Treated 0.03 -0.01 0.00 0.01 0.01 -0.01
(0.04) (0.04) (0.01) (0.03) (0.02) (0.01)
LowGrade 0.05* -0.11%** -0.03*** 0.06** 0.04*** -0.02**
(0.02) (0.03) (0.01) (0.03) (0.01) (0.01)
Data LULC LULC Satellite LULC Satellite Satellite
Dependent variable mean  0.22 0.63 0.32 0.16 -0.46 0.34
Observations 30,850 30,850 30,845 30,845 30,845 30,845
City fixed effects v v v v v v
Panel ¢) Environmental and climatic hazards
Outcome: Pollution Climatic
Hazard: PMs 5 NOy Flood Heat
Year: 2000 2010 2020
(1) (2) (3) (4) (5) (6)
LowGrade x Treated 0.09 -0.01 -0.01 0.00 0.00 -0.15
(0.17) (0.03) (0.03) (0.03) (0.04) (0.18)
LowGrade 0.33%** 0.05* 0.06* 0.08*** 0.06** 0.27*
(0.11) (0.03) (0.03) (0.03) (0.03) (0.15)
Dependent variable mean 1.68 4.58 13.15 9.81 7.78 38.89
Observations 30,268 30,268 30,845 30,845 30,845 30,845
City fixed effects v v v v v v

Notes: Standard errors are clustered at the city level. * 0.1 ** 0.05 *** 0.01

17



6.4 Mortality

Our analysis thus far has focused on specific environmental variables, such as proximity to toxic
plants, vegetation cover, and land use patterns, to assess the siting of pollutants. However, these
variables capture only a subset of potential environmental hazards, leaving open the possibility
that other unobserved pollutants or cumulative exposures contribute to long-term disparities.
Given the well-documented link between pollution and adverse health outcomes, including higher
rates of respiratory and cardiovascular diseases, our final measure considers mortality. To this
end, we link individuals residing in redlined areas during the 1930s to the Social Security death
records. This data enables us to examine whether individuals from historically redlined neigh-
borhoods exhibit higher mortality rates, capturing the cumulative health effects of exposure to

disadvantaged living conditions over time.

Table (4) Mortality

Sample: Age-at-death
(1) (2) (3)
LowGrade x Treated -0.022 -0.052 -0.020
(0.068) (0.147) (0.066)
LowGrade -0.166*** -0.219** -0.115**
(0.054) (0.097) (0.051)
LowGrade x Treated x Moved 0.009
(0.150)
LowGrade x Moved 0.058
(0.093)
LowGrade x Treated x Black 0.104
(0.109)
LowGrade x Black 0.034
(0.131)
Observations 239,688 204,108 239,679
City F.E. v v v
Birth Year F.E. v v v

Notes: The table reports estimates for age at death (in years) using linked Social Security death records. The
unit of observation is an individual. The sample includes individuals residing in neighborhoods (hexagons) with
predicted HOLC grades and treatment status defined at the city level. Treated equals one for cities surveyed by
the HOLC and zero for comparison cities below the population cutoff. LowGrade is an indicator for the lower
grade within the relevant comparison; in the specifications shown it equals one for grade D and zero for grade
C (predicted HOLC grades). All specifications are estimated by OLS with city fixed effects and birth-year fixed
effects, and standard errors are clustered at the city level. Column (1) reports baseline estimates for the full
sample. Column (2) allows the effect to vary by residential mobility, where Moved is an indicator equal to one if
the individual’s ZIP code at death differs from the 1940 ZIP code. Column (3) allows the effect to vary by race,
where Black is an indicator for Black individuals. *, **, and *** denote significance at the 10, 5, and 1 percent
levels.

Table 4 reports results for age-at-death where we residualize the data using birth year fixed
effects. Our main results are also confirmed by the mortality data. People who resided on the
D-graded side (or counterfactual D-graded side) died about 0.16 years (=~ 2 months) earlier on
average. Yet, the interaction effect is not statistically significant. Column 2 includes further
interactions with moved status to test whether individuals who were born in low-graded and

redlined neighborhoods were are to compensate for this disadvantage by migrating out. Yet,
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the coefficient on the triple interaction implies that even those individuals who moved die at a
similar younger age. Lastly, column 3 tests whether Black individuals had a differential impact.

But, also here, the interaction on age at death is not statistically significant.

7 Conclusion

In the second half of the 1930s, the Home Owners’ Loan Corporation undertook an unprece-
dented effort to survey and classify residential neighborhoods across more than 200 U.S. cities.
Conceived as a data-driven initiative to standardize real estate appraisal and stabilize hous-
ing markets during the recovery from the Great Depression, the resulting Residential Security
Maps quickly became an influential information tool for housing professionals. In the decades
since, these maps have also come to symbolize institutionalized discrimination in public debate
and policy discussions. This historical reassessment is grounded in both archival evidence and
post—civil rights norms of equality, and it remains valid independently of the magnitude of any
estimated causal effects. At the same time, careful quantitative analysis can still play a useful
role by clarifying how, and through which channels, this widely debated federal intervention
shaped patterns of urban inequality.

A central empirical challenge in this context is that HOLC grades were deliberately assigned
along neighborhood boundaries that closely tracked pre-existing socioeconomic conditions. To
address this challenge, we depart from spatial regression discontinuity approaches and instead
exploit an exogenous population threshold that determined which cities were surveyed. By com-
bining this design with a machine-learning classification model that reconstructs counterfactual
HOLC maps in comparable, unsurveyed cities, we isolate the effects of neighborhood grading
from broader urban trends. Our findings indicate that the maps reinforced racial sorting and
segregation but did not independently drive the siting of environmental or climatic hazards.
More broadly, the results illustrate the limits of correlational evidence in this setting: strong
associations between historical grades and present-day environmental outcomes need not imply
causal effects of the HOLC maps themselves. Distinguishing correlation from causation is there-
fore essential for understanding the legacy of redlining and for interpreting the role of historical

housing policies in shaping contemporary environmental inequality.
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A Appendix

Figure (A1) HOLC Area Description Form, Neighborhood C-4, Pittsburgh, PA

Notes: The scan of the Area Description for neighborhood C-4 of Pittsburgh, PA, has been provided by Mapping
Inequality (7).
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Figure (A2) Map of treated cities vs. control cities across the entire US
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Notes: The map displays the geographic distribution of cities included in the analysis. Cities assigned to the
control group are marked in blue, while cities in the treated group are indicated in red.

Figure (A3) Variable Importance Measures from Random Forest Algorithm
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Notes: The histograms summarize the relative contribution of different groups of covariates to the random
forest classification. The left panel displays category-level importance based on a bias-corrected impurity metric
implemented in the ranger package (Wright and Ziegler, 2017) and discussed in Nembrini et al. (2018). The right
panel reports permutation-based importance measures computed separately for each HOLC grade. For ease of
comparison across panels, all importance measures are normalized.
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Table (A1) Random Forest Performance, Confusion Matrix

Data
D C B A
D 12923 651 85 12
C 967 18056 920 101
Prediction
B 86 581 8405 386
A 8 26 123 2097
Accuracy \ 91.31%
Class Sensitivity | 92.41 93.49 8K.17 80.77
Prevalence \ 30.78 42.52 20.99 5.71
Detection Prev. \ 30.09 44.12 20.82 4.96

Notes: The table reports a comparison between observed HOLC grades and grades predicted by the random
forest classifier using an out-of-sample test set. The test sample consists of 25% of the original hexagon-level
observations and is drawn using stratified random sampling by city population and observed HOLC grade. The
unit of observation is a hexagon, and the sample includes all hexagons located in mapped cities with at least
20 residents in 1930. Predicted grades correspond to the modal class assigned by the trained random forest
model. Querall accuracy denotes the share of hexagons for which predicted and observed grades coincide. Class
sensitivity for grade j is defined as the fraction of correctly classified hexagons among those with observed grade
j. Prevalence reports the distribution of observed grades in the test sample, while detection prevalence reports
the distribution of predicted grades.

Table (A2) Balance of neighborhood characteristics on C-B
Sample: 1930
Black share Ownership rate House value Rent price
(1) (2) (3) (4)
LowGrade x Treated 0.01 0.13 0.06 0.03
(0.03) (0.11) (0.08) (0.10)
LowGrade 0.06*** -0.64** -0.59*** -0.19*
(0.02) (0.06) (0.05) (0.10)
Dependent variable mean -0.22 0.16 0.06 0.05
Observations 15,965 15,957 15,927 15,927
City fixed effects v v v v
Sample: 1920
Black share Ownership rate Black share Ownership rate
(1) (2) (3) (4)
LowGrade x Treated 0.01 0.09 0.04 -0.01
(0.03) (0.09) (0.06) (0.09)
LowGrade 0.03* -0.53*** -0.03 -0.38"**
(0.01) (0.05) (0.03) (0.07)
Dependent variable mean -0.20 0.18 -0.17 0.15
Observations 12,611 12,607 10,505 10,499
City fixed effects v v v v

Notes: Regression of neighborhood characteristics in 1930, prior to redlining. The observations are
weighted by 1930 neighborhood population. Standard errors are clustered at the city level. * 0.1 **

0.05 *** 0.01
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Table (A3) African American segregation: neighborhoods
Sample: D-C C-B
1940 2010 1940 2010
(1) (2) (3) (4)
LowGrade x Treated 0.012 0.017 0.004 0.029*
(0.037)  (0.022)  (0.006)  (0.017)
LowGrade 0.109***  0.069***  0.010***  0.032**
(0.024)  (0.015)  (0.003)  (0.013)
Dependent variable mean 0.07 0.23 0.02 0.17
Observations 17,984 30,836 15,394 26,146
City fixed effects v v v v

Notes: Estimation of Share of African American inhabitants of a neighbor-
hood. Standard errors are clustered at the city level. * 0.1 ** 0.05 *** 0.01

Table (A4) Rent: neighborhoods
Sample: D-C C-B
1940 1990 1940 1990
(1) (2) 3) (4)
LowGrade x Treated 0.126 -2.678 12.955 1.105
(12.423)  (5.021)  (12.895)  (5.119)
LowGrade -15.197  -17.648"* 2114 -28.433***
(9.315) (3.237) (6.654) (3.474)
Dependent variable mean 38.16 340.30 43.14 359.35
Observations 17,970 30,791 15,381 26,117
City fixed effects v v v v

Notes: Estimation of average rent in a neighborhood. Standard errors are clus-
tered at the city level. * 0.1 ** 0.05 *** 0.01

Table (A5) Home ownership: neighborhoods
Sample: D-C C-B
1940 2010 1940 2010
(1) (2) 3) (4)
LowGrade x Treated 0.003 -0.020 0.030 0.013
(0.023) (0.020) (0.025) (0.025)
LowGrade -0.067***  -0.055***  -0.131***  -0.084***
(0.014) (0.014) (0.017) (0.019)
Dependent variable mean 0.45 0.46 0.51 0.50
Observations 17,981 30,832 15,391 26,142
City fixed effects v v v v

Notes: Estimation of home ownership rate in a neighborhood. Standard errors
are clustered at the city level. * 0.1 ** 0.05 *** 0.01
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Table (A6) African American segregation: neighborhoods, long-differences

Sample: D-C C-B
1930-1940 1930-2010 1930-1940 1930-2010
(1) () () (4)
LowGrade x Treated 0.012** 0.001 0.001 0.059***
(0.005) (0.031) (0.002) (0.022)
LowGrade -0.007** -0.034** 0.000 0.021
(0.003) (0.015) (0.001) (0.014)
Dependent variable mean 0.00 0.14 0.00 0.13
Observations 17,916 18,661 15,340 15,965
City fixed effects v v v v

Notes: Estimation of Share of African American inhabitants of a neighborhood. Stan-
dard errors are clustered at the city level. * 0.1 ** 0.05 *** 0.01

Table (A7) Air pollution and climatic hazards, C vs. B

Sample: C-B
Year: 2020
Flood Heat NOy PMsys
(1) (2) (3) (4)
LowGrade x Treated 0.17 -0.06* 0.09 -0.03
(0.13)  (0.03) (0.21) (0.03)
LowGrade 0.17  0.09***  -0.07 0.04*
(0.09) (0.03) (0.16) (0.02)
Dependent variable mean 1.50 4.28 39.54 7.64
Observations 25,716 25,716 26,156 26,156
City fixed effects v v v v
Notes: Standard errors are clustered at the city level. * 0.1 ** 0.05

K 0.01
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