
Disparate air pollution reductions during California’s COVID-19
economic shutdown and their implications

Richard Bluhm1,2+, Pascal Polonik3+, Kyle S. Hemes4+, Luke C. Sanford2,5,6+, Susanne A.
Benz6,7+, Morgan C. Levy3,6+, Katharine Ricke3,5, Jennifer A. Burney6∗

1School of Economics and Management, Leibniz University Hannover, Germany
2Department of Political Science, UC San Diego, USA
3Scripps Institution of Oceanography, UC San Diego, USA
4Woods Institute for the Environment, Stanford University, USA
5School of the Environment, Yale University, USA
6School of Global Policy and Strategy, UC San Diego, USA
7Centre for Water Resources Studies, Dalhousie University, Canada

+These authors contributed equally.
∗Communicating author: jburney@ucsd.edu

Abstract: Minority communities in the United States often experience higher-than-average
exposures to air pollution. However, the relative contribution of institutional biases to these
disparities can be difficult to disentangle from other factors. Here, we use the economic shutdown
associated with the 2020 COVID-19 shelter-in-place orders to causally estimate pollution
exposure disparities caused by the in-person economy in California. Using public and citizen-
science ground-based monitor networks for respirable particulate matter, along with satellite
records of nitrogen dioxide, we show that sheltering-in-place produced disproportionate air
pollution reductions for non-white (especially Hispanic/Latinx and Asian) and low-income
communities. We demonstrate that these racial and ethnic effects cannot be explained by
weather patterns, geography, income, or local economic activity as measured by local changes in
mobility. They are instead driven by regional economic activity, which produces local harms for
diffuse economic benefits. This study thus provides indirect, yet substantial, evidence of systemic
racial and ethnic bias in the generation and control of pollution from the portion of the economy
most impacted in the early pandemic period.
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There exist substantial concerns in the United States about the pervasive harms of racism, which1

modern scholarship conceptualizes as either active or passive normalization of racial or ethnic2

inequities (1).∗ Particularly worrisome is the potential for institutionalized (or systemic) racism –3

in the form of policies, regulations, and norms that favor certain racial or ethnic groups (2) – to4

perpetuate such harm via democratic processes. Rigorous quantitative evidence of institutional5

racism can be difficult to come by, because the effects of various social and institutional processes6

that embed bias (for example urban planning and environmental regulation) often overlap in7

space and time, and thus stymie attempts at more specific attribution (e.g., (3)). This in turn8

makes policy proposals that address racism head-on more difficult to justify. This has long been9

the case with “environmental injustice” or the manifestation of systemic racism in environmental10

policymaking and enforcement (4).†11

Disparities in air pollution concentrations provide a clear example of this attribution problem (5–12

7). Air pollution is linked to a wide range of negative health consequences (8) and is estimated to13

cause nearly 9 million premature deaths globally per year (9). On average, these health effects14

are not distributed evenly among different demographic groups (10–13), running counter to15

the notion that society’s environmental burdens should be equally shared (5–7, 14). However,16

despite observable exposure gradients across racial and ethnic groups, causally ascribing such17

inequities to bias in environmental policy has proven difficult.‡ Economic and other social18

policymaking (e.g., housing, transportation, education) over generations has created the modern19

geography of who lives where. Over time, myriad physical and social confounds – including20

variable atmospheric transport processes (15), economic inequalities (12, 16), and neighborhood21

∗Here we use racism in the modern descriptive sense that does not hinge on the intent of the
perpetrator(s): that is, actions and policies that promote race-based inequities are racist, whether or not
such an outcome is intended.

†The term environmental injustice is often used more broadly to describe disparities across multiple
demographic dimensions, including, but not limited to, race and ethnicity. Here, for clarity, we use this
more specific definition with a primary focus on racism and racial disparities in environmental policy.

‡Here we consider ‘environmental policy’ to be the full landscape of policies, laws, statutes,
regulations, and enforcement mechanisms governing environmental quality. This definition includes gaps;
that is, existing loopholes, lack of regulation, and non-enforcement of rules are also forms of policy.
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demographics (11, 17) – have become correlated with present-day pollution exposures. As such,22

moving beyond simple observations of disparate but confounded exposures in contemporary23

cross-sections to causal attribution of environmental injustice requires additional evidence. This24

can be achieved by a random perturbation to the status quo (18); such a shock to the policy25

regime was provided by the initial COVID-19 economic shutdown in California (19).26

In early 2020, governments implemented unprecedented policies to limit the public health27

impacts of the COVID-19 pandemic (20), including stay-at-home orders and travel limitations,28

with California instituting some of the most aggressive lock-down measures in the U.S. (21). The29

well-known side-effect of these policies was widespread economic shutdown: businesses closed,30

factories shuttered, and employees temporarily discontinued their daily commutes (22).§ (In31

California, the transport sector accounted for an estimated 97.5% of the decline in CO2 emissions32

in spring 2020 over the same period in 2019 (23).) Because pollutants like particulate matter33

(PM2.5) and nitrogen dioxide (NO2) are produced by transportation, industrial processes, energy34

production, and agriculture (24), pollutant concentrations tend to track aggregate economic35

activity (25–27). The lockdown corresponded to reductions in both satellite and ground-based36

observations of NO2 and PM2.5 concentrations, particularly in transportation-heavy metropolitan37

regions (28–30). We leverage this period (March-April 2020) as a natural experiment that38

partially disentangles the confounding underlying legacy of historical social and economic policy39

from average air pollution exposures by providing a comparison between shutdown and non-40

shutdown (status-quo) pollution distributions.41

We employ established generalized difference-in-differences methods to quantify declines in42

ambient concentrations of two criteria pollutants (ground level PM2.5 and tropospheric column43

number density NO2) during March-April 2020, and test for the existence of heterogeneous44

effects associated with the racial and ethnic composition of neighborhoods. We utilize data45

§In California, 60.51% of businesses reported a decline in demand, 22.27% reported closure due to
government mandate, and only 13.9% indicated that the pandemic has no impact on their business
(Business Response Survey of the Bureau of Labor Statistics, available at www.bls.gov/brs/).
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from a relatively new network of low-cost particulate matter monitors that are predominantly46

privately-owned and deployed outside homes, along with data from state-run air quality sensors,47

satellite measurements, demographic and socioeconomic information, geographic data, and cell48

phone-based location data. By combining these datasets, we disentangle the contribution of local49

conditions (income, mobility, urban geography, weather) to local air pollution exposures. Data50

on mobility – defined as the extent to which individuals spend time away from their homes –51

are particularly important because they characterize variability in the shutdown’s effect on the52

local activity of different communities, as essential worker status and economic insecurity are53

associated with less time spent at home (31, 32).54

Because the reduction of pollution when shutting down most of the in-person economy ¶
55

corresponds to the pollution burden created by that portion of the economy, pre-pandemic,56

we interpret statistically larger reductions in air pollution exposures for minority racial and57

ethnic groups – conditional on other confounding factors (e.g., weather, income, geography,58

mobility) – as evidence of embedded bias in the generation and control of pollution from the59

in-person economy in the status quo. To our knowledge, this is the first study that uses these60

unique conditions to quantify racial inequities in air quality exposure caused by in-person61

economic activity. Our approach also demonstrates complementary inequities in the monitoring62

of pollution – shedding light on a path towards pro-actively addressing the identified inequities63

through air pollution monitoring policy that is itself environmentally just.64

¶We use the term ‘in-person economy’ to refer to economic activity from businesses, including
transportation to and from those businesses, that closed during the COVID-19 economic shutdown. As
outlined in Executive order N-33-20 of the State of California, closures affected all businesses except those
in 16 critical infrastructure sectors: chemical sector, commercial facilities sector, communications sector,
critical manufacturing sector, dams sector, defense industrial base sector, emergency service sector, energy
sector, financial service sector, food and agricultural sector, government facility sector, healthcare and
public health sector, information and technology sector, nuclear reactors, materials, and waste sector,
transportation systems sector, and water and wastewater systems sector. We must note that while these
sectors had the option to stay open, many did not, or continued operations in a reduced manner.
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Results65

Using daily and weekly pollution observations, along with demographic, geographic, and mobility66

data, we estimate how much race and ethnicity alone explain the changes in air pollution67

exposures experienced during the COVID-19 shutdown in California. We account for time-68

varying (e.g., local mobility, weather, seasonality), and relatively static factors (e.g., population69

density, income, proximity to roads) known to contribute to heterogeneous pollution exposure in70

different areas. (Our approach is described in detail in the Methods, as well as schematically in71

Figures 1G and S1.)72

Our study area and data are summarized in Figure 1. Aerosol PM2.5 measurements are drawn73

from a network of 826 monitors (106 public monitors from the California Air Resources Board74

(CARB), and 720 privately-owned PurpleAir monitors; Figure S2A), and cover the period from75

Jan 1 to April 30, for both 2019 and 2020 (to facilitate comparison across economic conditions76

at the same time of year). The low-cost PurpleAir sensors have been shown to correlate well77

with research-grade mass-based sensors, though they tend to have a high bias, which we have78

corrected before analysis (see Methods). The PM2.5 monitors are located in 746 unique census79

block groups across California. Satellite-derived tropospheric NO2 (Figure 1B) measurements80

from the TROPOMI instrument cover close to all 23,212 census block groups of California, but81

at a ∼weekly time scale, due to the overpass frequency of the Sentinel-5 precursor satellite.82

Local social, demographic, and geographic characteristics (Figure 1C-F), including income83

and population shares for race and Hispanic/Latinx ethnicity, are heterogeneously distributed84

across the state: for example, income tends to be higher in coastal communities and cities,85

and the southeast and Central Valley regions have higher Hispanic/Latinx population shares.86

Population shares by race are also spatially clustered: Asian population share is greatest in Los87

Angeles and the San Francisco Bay Area; Asian persons represent over 50% of the population88

in more than 1,400 census block groups. In contrast, fewer than 300 census block groups have89
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majority Black populations and these groups are spread more evenly throughout the state.‖90

This complex human geography demonstrates the importance of rich measurement networks in91

addressing questions of environmental justice: the PurpleAir monitors provide a 7-fold increase92

in the number of sampled census block groups, although this increase still only represents 3.2%93

of all California block groups. (For more detail, please see the supplemental information, which94

includes a detailed mapping tool∗∗.)95

In 2019 (the year prior to the pandemic), without controlling for other sources of heterogeneity,96

areas with lower income and larger Black and Hispanic/Latinx population shares were exposed97

to higher-than-average concentrations of both PM2.5 and NO2 compared to wealthier and white,98

non-Hispanic communities (Table S1, Figure S4). Such descriptive air quality differences have99

long been noted by environmental justice scholars and advocates (33–40), but these relationships100

are confounded by other contributors to variations in pollution exposure (Figure S1). Hence, it101

is difficult to separate the relationship of these measures with demographic groupings themselves102

from the social and economic characteristics of these groups, including the policies that generated103

those groupings (e.g., redlining) (41).104

The COVID-19 pandemic temporarily removed a large portion of this confounding economic105

geography by ‘turning off’ most local in-person economic activity in the state. Figure 2 shows106

the depth and dimensions of this natural experiment across the state. The unique response to the107

spread of COVID-19, including stay-at-home orders, precipitated a steep decline in the average108

fraction of the day that people spent away from their homes (hereafter, mobility), which took109

a little under two weeks after the state-wide emergency declaration (March 4, 2020) to fully110

emerge (Figure 2A). Importantly, reductions in time away from home did not occur equally for111

all state residents. Census block groups with relatively high Hispanic/Latinx population fractions112

both had higher baseline mobility and much smaller mobility reductions during the shutdown113

‖Hispanic/Latinx ethnicity is tallied independently of other race information in the U.S., and is
therefore not mutually exclusive from race (see Methods; Figure S3).

∗∗https://sabenz.users.earthengine.app/view/covid-ej
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than those with relatively low Hispanic/Latinx populations (Figure 2B, Table S2). This is likely114

due the greater designation of essential jobs and economic vulnerability to Hispanic/Latinx115

populations, relative to non-Hispanic/Latinx populations, that precludes working from home116

(42). This disparity is present, though much less pronounced, for census block groups with high117

and low Black population shares, and the pre- and post- shutdown differences are reversed for118

high and low Asian population shares. We account for these different responses in the statistical119

framework described below.120

Using a series of generalized difference-in-differences models (see Methods), we estimate the121

relative magnitudes of the reductions in PM2.5 and NO2 concentrations before and after the122

shutdown (adjusting for 2019 concentrations) across different demographic gradients (we show123

and discuss PM2.5 results in the main text, with NO2 results in the SI, for brevity). The best-fit124

coefficients for these models, Tables S3-S4, Figure 3 and Tables S7-S8, Figure S5, correspond to125

the statistically identifiable expected changes in air pollution, across the COVID-19 shutdown126

window, for a 0% vs. 100% share of a given demographic group at the census block group level,127

or roughly a doubling of non-share variables (e.g., income, road density, population density).††128

These coefficients show that lower-income neighborhoods in California experienced greater129

reductions in PM2.5 concentration (Figure 3A); the positive and statistically significant coefficient130

for income indicates that lower incomes were strongly associated with a greater reduction131

of pollutant levels during shutdown. For example, our estimates indicate that a block group132

with an average income that is half that of a wealthier block group would have experienced133

a -1µg/m3 greater reduction in PM2.5 exposures. Changes in mobility, road density, and134

population density at the level of a census block group are only weakly associated with changes135

in PM2.5 concentrations (Figure 3A).136

We consider mobility to be a proxy for local pollution-causing economic activity, and assume137

††We note that estimating the population average change, on the other hand, would require a stronger
statistical assumption than we make about the similarity of other (i.e. seasonality) conditions in 2019 and
2020 (See Methods.)
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that decreased mobility directly corresponded to reduced vehicle emissions along with a suite138

of local business-related emissions (e.g., restaurant closures). Therefore, the relationship between139

the relative decline in local mobility and the relative decline in local air pollution gives insight140

into the pollution impacts of a block group’s own economic activity. Figure 3B and Table S5141

show that residents in lower-income neighborhoods reduced their mobility less than richer142

neighborhoods during the shutdown period. Combined with the fact that lower-income areas143

experienced a larger drop in PM2.5 concentrations, this finding suggests that local activity is not144

the primary driver of disparate exposures across the income gradient in California.145

To further probe potential heterogeneity in the magnitude of shutdown impacts, we examine146

exposure changes across neighborhood demographic gradients – with and without accounting147

for various local characteristics (Figures 3C,E and Tables S3-S4). We identify substantial racial148

and ethnic disparities in air quality improvements, even when accounting for income, road and149

population density, and very fine-grained differences in weather patterns over space and time150

that strongly affect surface pollutant concentrations (see Methods and Supplement). We first151

examine the gradient for all non-white populations (that may also be Hispanic/Latinx) and152

then decompose this group into the three largest racial and ethnic subgroups. A ten percentage153

point (pp) increase in the non-white population of a census block is -0.24 µg/m3 reduction in154

PM2.5 concentration after the shutdown. This falls to about -0.22 µg/m3 once we include local155

mobility and allow for heterogeneous effects of the shutdown in terms of income, road density,156

and population density (mobility impacts are shown directly in Figure 3D and Table S5). The157

decomposition shows that this estimate is close to those for the Hispanic/Latinx population158

where we find reductions in PM2.5 concentration of -0.28 and -0.24 µg/m3, respectively). We159

interpret this as evidence that in-person economic activity places a disproportionate pollution160

burden on non-white and Hispanic/Latinx communities, only about a seventh of which is161

explained by differences in incomes and other location characteristics. We observe a nearly162

identical change of -0.22 µg/m3 in PM2.5 concentration for every ten pp increase in the Asian163
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population of a block group after accounting for heterogeneous effects in location characteristics.164

Hispanic/Latinx and Asian are the two largest racial and ethnic minority groups in the165

state, making up about 39% and 16% of the population, respectively. While they share some166

similarities in historical inequitable treatment, there are several major differences in the167

socioeconomic attributes of the two groups. Acknowledging that we necessarily aggregate168

diverse subpopulations within racial and ethnic groups (43) (see Supplemental Text), Asian169

Californians are predominately concentrated in urban areas and have on average higher incomes170

and education, whereas Hispanic/Latinx populations are more skewed towards rural areas, and171

have on average lower incomes and education.(44) Moreover, as described above, the two groups172

had different baseline exposures and opposite mobility responses to the shutdown. Despite these173

large circumstantial differences, their disproportionate exposure to economy-scale pollution is174

substantially similar, providing strong, albeit indirect, evidence of the influence of systemic175

racism in the mechanisms and institutions responsible for pollution control.176

We do not find statistically significant pollution reductions associated with increased Black177

population share. That is, while the shutdown economy became more equitable in its pollution178

distribution vis-a-vis Hispanic/Latinx and Asian communities, the same was not true for Black179

neighborhoods, where substantial baseline pollution gradients remained unchanged. This may180

be in part statistical – the overall Black population share is around 7% and there are relatively181

few majority Black census block groups in the state (Figure 1F) – but it also suggests that182

the in-person economy is not the main driver of pollution disparities for Black communities in183

California.184

The findings from surface air quality data are largely consistent with an analogous set of185

models run using weekly satellite-derived NO2 concentrations as the outcome, although some186

small differences between the two reflect both coverage discrepancies and the distributions of187

PM2.5 and NO2 sources in the state (Figure S5, Tables S7-S8). The PM2.5 results are also robust188
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to consideration of sub-regions of California, e.g. excluding Los Angeles, the Central Valley, or189

both (Figure S6), suggesting that the findings are not driven by the seasonality of pollution,190

different pollution sources, demographics, or unique airshed dynamics of these key regions. For191

both pollutants, the importance of accounting for fine-grained weather patterns is evident from192

the difference (e.g., in Figures 3 and S5) between estimates from our full model (‘All’) and a193

model that includes all controls except weather (‘w/o weather’). Prevailing weather patterns (see194

Methods) that potentially transport pollution do account for some of the exposure disparities195

observed, with some variation by region and pollutant, but do not fully explain the observed196

patterns.197

Discussion198

Here we provide new causal estimates of the inequalities in air pollution exposure reduction199

experienced during California’s COVID-19 economic shutdown. Because these reduction200

disparities are associated with significant and widespread economic curtailment, they point to201

systemic racial and ethnic bias in the status quo generation and control of air pollution generated202

by the state’s in-person economy. While this finding is robust to various specifications and data203

subsets, and is consistent across surface- and satellite-based data, our analysis nevertheless204

requires some contextualization and care in interpretation.205

Importantly, while we note that exposure disparities are not explained by local mobility, the206

ability to fully distinguish local and non-local economic activity is limited, and representative207

spatial scales of local versus non-local may vary (e.g., geographically, culturally, seasonally).208

We additionally note that while we focus on the non-local drivers of exposure disparities, local209

mobility-related pollution generation may nevertheless be caused by structurally unjust policy210

in other sectors (e.g., housing, transportation). More broadly, it is important to recognize that211

contemporary and historical biases in other policy areas can lead to disparate average exposures,212
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even if environmental policy were unbiased. This may be what explains our finding of higher213

average pollution exposures, but no disproportionate air quality benefit from the COVID-19214

shutdowns, for Black communities in California.215

Our analysis consistently identified that lower income communities in the state are216

disproportionately affected by pollution from the in-person economy. While we primarily217

employed income as a control, this income disparity represents an important environmental218

justice concern in and of itself, and presents policy challenges that are unique from those219

associated with combating institutional racism. California has one of the highest rankings for220

income inequality among U.S. states (44), and our findings provide additional evidence both that221

wealthier communities are able to both buy environmental quality (i.e., higher housing prices222

embed air quality) and can afford to stay at home more fully during a pandemic.223

Our empirical results complement a growing body of literature that uses Chemical Transport224

Models (CTMs) (or Reduced Complexity Models, or RCMs) to model pollutant exposures225

and map them to local socio-economic and demographic characteristics. Importantly, such226

studies have been instrumental in identifying that a vast array of pollution sources contribute to227

baseline exposure disparities (17). While CTMs and RCMs have become ever more powerful and228

accurate, and have the benefit of full coverage (compared to sparse monitoring networks), they229

do require accurate emissions inventories as inputs. Such inventories have rapidly improved in230

temporal resolution for long-lived greenhouse gases (e.g., (45)) but remain notoriously uncertain231

for air pollution, especially over short time scales and under abnormal economic conditions232

(46). Our analysis strategy based on high-frequency observations of actual ground-level (or233

atmospheric column) pollution does not require emissions inventories and is thus well-suited for234

understanding short-run changes in a way that modeling studies would be unable to capture.235

Nevertheless, statistical studies like ours require accurate and unbiased characterization of the236

system under study and have their own shortcomings. For example, we cannot illuminate some of237
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the more specific mechanisms of shutdown-induced variation in air pollution, like whether being238

near to and downwind from a major road is more likely for ethnic/racial minorities (47, 48).239

A key point of contrast to modeling studies is that we do not explicitly account for individual240

point source emissions or wind, but instead use areal road density summaries (see Methods), and241

detailed temperature, precipitation, and relative humidity controls (see Figure S7), to capture242

much of this variation; because our analysis focuses on differences in the same block group243

over time, the average influences of these and other unobserved factors are taken into account.244

Still, we cannot rule out that some of our measured effects may be driven by either variations245

in emissions or meteorological conditions that are correlated with both the demographic246

characteristics of a neighborhood and the COVID-related shutdown. Future studies could focus247

on more thoroughly accounting for natural seasonal swings in air pollution and the full range of248

its spatial and temporal variability through the inclusion of more years of data (19). This was249

not possible here due to the short timescale of PurpleAir and Sentinel data availability; however,250

our use of 2019 as a comparison for 2020, and the similarity of estimates made with pre- and251

post-shutdown 2020 data alone (see Table S9), underscore that the exposure disparities we252

estimate are not likely to be systematically changed by inclusion of more years of observations.253

Beyond revealing disparities in pollution exposure generated by the in-person economy, our254

analysis also highlights inequality in local air pollution information. As we show, monitor255

placement matters for detection of exposure gradients. CARB recently re-focused air quality256

monitoring in designated environmental justice communities (49), which has resulted in a more257

accurate sample of the state’s Hispanic/Latinx population distribution than (e.g.) PurpleAir.258

The PurpleAir monitoring network, established through the individual purchase and placement259

of (relatively) low-cost sensors, shows both that citizen science networks can be exceedingly260

useful for increasing the amount of public data, but that those networks are unlikely to be261

optimally placed for addressing environmental justice questions (for which sensors are needed262

that accurately reflect the spatial distribution of all sub-populations). PurpleAir sensors also263
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require care in correcting biases compared to monitoring-grade instruments (50). On the264

public monitoring side, local governments that are responsible for choosing locations of sensors265

mandated by the Clean Air Act (i.e. CARB) may also strategically place sensors to improve266

their chances of being in attainment (51, 52). This strategic placement reduces the ability267

of those sensor networks to detect environmental injustice (53) and makes adjustments for268

sampling bias, like those proposed here, relevant for the larger literature (see Supplemental269

Text). Lastly, while we show that satellite-based observations can be helpful in understanding270

the spatial distribution of pollutants that underlies ground-based monitoring network samples,271

satellite data are spatially coarse compared to the average census block group, and are more272

limited temporally (see Supplemental Text). As such, satellites may not be able to replace273

ground-based monitoring when high spatial and temporal resolution are required. While a more274

spatially dense ground measurement network would vastly improve the ability to detect and275

address environmental injustice, reliability, cost, distribution, and data curation would need to276

be considered in choosing a scale-up strategy (54, 55).277

Finally, while our analysis documents that the generation and control of pollution from278

California’s in-person economy disproportionately and negatively affects the state’s largest racial279

and ethnic minority communities, it also has potential applications in environmental policy280

making. The United States has a multidecadal history of justifying environmental regulation281

through the use of an efficiency-based net benefit criterion (the simple objective that regulatory282

benefits exceed costs) (56, 57). Many state and federal entities additionally mandate that283

regulatory impact analysis include assessment of impacts to disadvantaged and vulnerable groups284

(e.g., (57, 58)), and recently this has been identified as a major environmental policy priority285

(59). It is difficult, however, for equity considerations to obtain equal footing with efficiency286

criteria when best practices for benefit-cost analysis are strictly codified (60), but there is no287

standard assessment criterion for justifying interventions that mitigate inequities (61). For race288

and ethnicity-based equity considerations, our methodology suggests that a net equalization289
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criterion for environmental regulation could be constructed as follows, and utilized in conjunction290

with benefit-cost analysis:291

NetEqualization = ∆Exposurenon−White|Income −∆ExposureWhite,non−Hispanic|Income (1)

In this framework, the pollution reduction effect we identify as associated with the COVID-19292

shutdowns had a net equalizing effect (though absent inclusion of public health benefits, uniform293

reduction of regional economic activity would be unlikely to satisfy the net benefit criterion).‡‡294

When systemic bias is driving adverse outcomes, public policy intervention focused narrowly295

on addressing market failures may eventually result in reversion to inequality (62). Revising296

regulatory impact analysis protocols to include a clear, quantitative equalization standard would297

instigate a significant shift in focus of environmental regulation beyond efficient reduction of298

externalities.299

‡‡As in our analysis, controlling for income would be critical for any equalization criterion, not just
because income can be a confounding factor in identifying environmental racism, but also because the
policy mechanisms by which societies might address income-dependent environmental injustice are
different from those for addressing environmental racism.
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Data and Methods300

Data301

PM2.5 Data: Surface station measurements of particulate matter with diameter smaller than302

2.5 µm (PM2.5) were downloaded from publicly available databases from PurpleAir and the303

California Air Resources Board (CARB) (Figure S8). We downloaded all outdoor PurpleAir304

data available (1891 individual stations) for Jan-Apr 2019 and 2020. PurpleAir sensors are305

relatively inexpensive and are usually privately owned, but much of the data is publicly available.306

The quality of these data are lower than data from regulatory monitors, but PurpleAir sensors307

provide unprecedented spatial coverage. Most PurpleAir sensors contain two Particulate Matter308

Sensor (PMS) 5003 sensors (Plantower, Beijing, China), which measure particle counts in 6309

size bins. Counts are converted to PM2.5 using two proprietary conversions, one intended for310

indoor use and the other for outdoor use; here we use the outdoor conversion as recommended311

and tested by Tryner et al. (2020) (63). We also average the two sensors (when available) and312

exclude days when daily PM2.5 measurements within the same unit differ by at least 5 µm m−3313

and at least 16% (50). In limited field evaluations, PurpleAir sensors have been shown to have314

strong correlations with high-quality sensors (63–66)). Tryner et al. also proposed a correction315

for effects of relative humidity, which we do not apply in part because we consider daily data316

rather than sub-daily. We do, however, apply a correction developed by the EPA, which tends to317

slightly over-correct the high bias of the PurpleAir instruments, meaning the presented results318

from these sensors are conservative (Figure S9) (50).319

We retrieved (May 1, 2020) all hourly CARB PM2.5 data in California available for Jan-Apr320

2019 and 2020 using CARB’s Air Quality and Meteorological Information System (AQMIS),321

and calculated the daily mean (150 individual stations). Professional instruments and oversight,322

particularly for calibration, provide higher confidence in the data quality of the CARB sites.323

However, there are an order of magnitude fewer CARB stations than PurpleAir sensors in324
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California, which means studies using the government data are statistically limited by a relatively325

small sample size. Unlike PurpleAir sensors, CARB sites often offer a wide variety of air326

pollutant measurements, though we only use hourly PM2.5 aggregated to the daily mean. For327

both CARB and PurpleAir data, days with mean PM2.5 equal to zero or greater than 500 µg328

m−3 are removed as outliers. Sites for which we remove more than 10% of data are excluded329

from the entire analysis. Sites with less than 80% data coverage during our study period are330

also excluded. For models that require 2019 and 2020 data, we apply these requirements to both331

years independently. This quality filtering removed 5.9% of daily CARB PM2.5 data, and 11.4%332

of daily PurpleAir data resulting in data from 1664 individual stations (119 CARB and 1545333

Purple Air). However, only 826 of those (106 CARB and 720 PurpleAir) include data for 2019334

and 2020 for the pre-shutdown and shutdown period, and were therefore used in our empirical335

statistical analysis.336

NO2 Data: We used the Copernicus Sentinel-5 Precursor TROPOspheric Monitoring337

Instrument (TROPOMI, version 1.03.02) Offline tropospheric NO2 column number density (67)338

for mean NO2 concentrations of the developed areas of each census block group. TROPOMI has339

a resolution of 0.01 arc degrees. Data were collected for Jan-Apr 2019 and 2020 and only for340

developed areas based on the U.S. Geological Survey (USGS) National Land Cover Database341

(NLCD) 2016 (68). For this study, all data was prepared using the Google Earth Engine Python342

API (69) and formatted as weekly means for each census block group. Weekly means were chosen343

to counteract the high frequency of missing data, particularly in northern California (Figure344

S10).345

Climate Data: To gather information on temperature, precipitation, and relative humidity346

we relied on the Gridded Surface Meteorological dataset (GridMet) (70). GridMet provides347

daily information in a 4-km resolution across the continental USA. For this study, data348

were aggregated in Google Earth Engine (69) in its original daily frequency for each349

PM2.5 measurement station, and as a weekly mean for the NO2-Data for each census block350
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group. The weekly mean data was only collected for developed areas based on the U.S.351

Geological Survey (USGS) National Land Cover Database (NLCD) 2016 (68).352

Mobility Data: We use SafeGraph’s Social Distancing Metrics (71), which were made available353

for research as part of the company’s COVID-19 response, and have been validated elsewhere354

(e.g., (72)). SafeGraph collects and cleans GPS pings from about 45 million mobile devices. The355

data are available daily at census block group resolution and are close to a random sample of the356

population. Our primary measure of mobility, not social distancing, is the percent of time spent357

away from home. We calculate this measure based on the median time (in minutes) that a device358

was observed at its geohash-7 (about 153 m×153 m) home location, which SafeGraph determines359

as the night time residence of the device in the 6-weeks prior. The data cover the entire period of360

observation from Jan 1, 2019 until the end of April 2020.361

Demographic Data: We downloaded census block groups level demographic information362

from the U.S. Census Bureau 2018 5-year American Community Survey (ACS) for all CBGs in363

California using the tidycensus package (73) for the R programming environment (74) (June 29,364

2020). Demographic features included ACS sample-based CBG-level estimates of: population365

count; white race count (alone or in combination with one or more other races), or “white”;366

Black or African American race count (alone or in combination with one or more other races),367

or “Black”; Asian race count (alone or in combination with one or more other races), or “Asian”;368

Hispanic or Latino origin (of any race) count, or “Hispanic/Latinx”; and median income. Other369

race and ethnic groups represent a substantially lower share of the California population, and370

were therefore excluded from our analysis due to small sample sizes. The CBG-level “share”371

of these groups was calculated by dividing the CBG count by the CBG population. Population372

density was calculated as the CBG population divided by the area of the CBG. For the aggregate373

comparison, we compute the share of the non-white population which may be Hispanic/Latinx374

as one minus the share of whites which do not also identify as Hispanic/Latinx. Because375

Hispanic/Latinx is a separate designation from race in the ACS (i.e., those categorized as376
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Hispanic/Latinx may also be of any race), we evaluated how distinct Hispanic/Latinx was from377

race variables of interest (Figure S3). On average, less than 1% of those identified at the CBG378

level as Hispanic/Latinx were also identified as Black or Asian; 61% of Hispanic/Latinx were379

White. Thus, Hispanic/Latinx is effectively distinct from Asian and Black categorizations, and380

we consider Hispanic/Latinx, Asian, and Black designations to be unique demographic indicators381

in our model. The baseline reference group in the more detailed comparison contains all other382

races and ethnicities and therefore consists almost entirely of people who identify as non-Hispanic383

White.384

Geographic Data: We calculated road density (m / km2) using The Global Roads385

Inventory Project (GRIP4) (75) vector dataset for North America, downloaded at386

https://www.globio.info/download-grip-dataset (April 4, 2020). The GRIP4 dataset harmonizes387

global geospatial datasets on road infrastructure, including road features that can be categorized388

as highways, primary roads, secondary roads, tertiary roads and local roads. It is consistent with389

primary and secondary road classifications from the U.S. Census TIGER/Line shapefiles for390

roads. To calculate road density for each CBG, we summed road lengths within the area of the391

CBG, and divided by the area of the CBG. Calculations were done using the sf package (76) in392

the R programming environment (74).393

Methods394

Study period: We consider three periods between Jan 1 and April 30 in 2019 and 2020. The395

first period is “pre-shutdown,” followed by a “transition,” and then “shutdown.” The transition396

is defined as the period between the state-wide emergency declaration (March 4, 2020) and the397

state-wide stay-at-home order (March 19, 2020). The mobility data demonstrate that activity398

declined throughout this period (Figure 2). This is consistent with recent literature which shows399

that fear was a potent driver of the decline in mobility and often preempted county-wide legal400
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restrictions (77). The shutdown period begins with the stay-at-home order and ends at the end401

of our study period. We exclude the transition from the model analyses described below. This402

precludes the use of variation in treatment timing to assist with causal identification. Instead,403

we proceed by using the interaction between the shutdown and racial composition of census404

block groups as the treatment, allowing us to directly estimate the additional pollution burden405

of economic activities which were halted during the shutdown on block groups with certain racial406

compositions. This is standard practice, referred to as “generalized difference in differences”–see407

the supplemental text for details. In our case, there is no group which remains untreated and no408

variation in treatment timing but heterogeneity in treatment intensity.409

Empirical Strategy: In our statistical analyses, our main dependent variable is an (average)410

measure of air quality (PM2.5 or NO2) in census block group i at day (or week) t. We focus411

on block groups to minimize the influence of aggregation bias or the “ecological fallacy” (78)412

and study temporal variation in air quality across block groups using a difference-in-differences413

design. Difference-in-differences methods are commonly used to study causal effects in economics414

(79). Our objective is to estimate the heterogeneity in the effect of the shutdown across different415

communities, rather than the overall effect of the shutdown. We focus on the racial composition416

of California’s three biggest racial and ethnic minority groups (Hispanic/Latinx, Asian, and417

Black) to first establish the existence of an air pollution exposure inequity and then include418

observed characteristics of minority populations to document the racial inequities that remain419

after accounting for differences in mobility, income, and location (80).420

A key concern is that differences in air quality are driven by interannual cycles in pollution and421

particle concentration that are unrelated to the shutdown. We address this issue in several ways.422

First, we subtract observed air quality in 2019 from the 2020 value. All annual differences, after423

aligning the weekdays, are denoted by ỹit = yit − yi,t−364. Second, we flexibly control for local424

weather conditions in 2020 and 2019. Finally, we allow for a rich set of day or week fixed-effects425

which capture the remaining differences in synoptic scale weather patterns. We estimate the426
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heterogeneous effect of the shutdown using variants of the following specification:427

ỹit =

K∑
k=1

γk

(
dt × xki

)
+ θM̃it + f2020 (T,RH,P )it + f2019 (T,RH,P )it + λt + µi + eit (2)

where dt is an indicator for the post-shutdown period, xki are the population shares of the three428

minority groups studied here or other (relatively) time-invariant location characteristics k that429

vary at the census block group level, M̃it is the annual difference in mobility on day t in census430

block group i (constructed analogously to ỹit), f
2020 (·)it and f2019 (·)it approximate the non-431

linear response of pollution and particle concentration to weather with interacted fixed effects432

for each decile of temperature, relative humidity and precipitation in the corresponding year,433

λt are day (or week) fixed effects, µi are census block group fixed effects (capturing changes in434

the number of stations in a block group across years), and eit is an error term. We cluster all435

standard errors on the county level, as stay-at-home and local health ordinances are spatially and436

temporally correlated at this level.437

We are interested in γk, which captures the heterogeneous impact of the shutdown across438

different demographic gradients (see SI text for a derivation). The baseline effect of the439

shutdown, dt, is not statistically identified without the assumption constant seasonal emissions440

patterns, as that baseline effect occurs simultaneously for all block groups in California (Figure441

S11) and is therefore collinear with seasonal shifts in air quality that are unrelated to the442

COVID-19 shutdowns. Heterogeneous impacts are identified by variation among block groups443

experiencing a COVID-19 shutdown-related air pollution change only, and can be interpreted as444

the effect of the shutdown relative to some baseline. This requires a weaker assumption: that445

the inter-annual differences in pollution are not simultaneously correlated with the timing of446

the shutdown and the spatial distribution of race and income. Our weather controls make this447

a plausible assumption by accounting for systematic differences in temperature, humidity, and448
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rainfall across different parts of the state. We interpret the coefficient on dt ×% Hispanic/Latinx449

as the difference in PM2.5 concentration for a block group which is 100% Hispanic/Latinx,450

relative to a block group which is 0% Hispanic/Latinx. Differences in air pollution concentrations451

across the shutdown window are typically reductions in air pollution, which we consider to be452

equivalent to the expected increase after a return to “business-as-usual” conditions.453

Software: All data processing and analysis other than acquisition, and pre-processing of454

mobility information was done using the R programming environment (74) and the python API455

for Google Earth Engine (69).456
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Gasser, Yonatan H Grad, Bryan Grenfell, M Elizabeth Halloran, Moritz UG Kraemer, et al.723

Aggregated mobility data could help fight covid-19. Science (New York, NY), 368(6487):145,724

2020.725

[93] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky,726

and Jure Leskovec. Mobility network models of covid-19 explain inequities and inform727

reopening. Nature, pages 1–6, 2020.728

29



Figure 1: Pollution and demographic data used in this study. A,B Average surface
PM2.5 and tropospheric NO2 concentrations in the pre-shutdown period of 2020 in California,
United States. C Median income ($USD) in each census block group from the U.S. Census
Bureau 2018 5-year American Community Survey (ACS). D - F Share of the population in
each census block group that is Hispanic/Latinx, Asian, or Black, from the ACS. G Schematic
showing the many slower-changing (assumed to be static over shorter periods) and higher-
frequency factors that contribute to heterogeneous pollution exposures. (Symbols courtesy
of Noun Project: Automobile by Symbolon; Income and Highway by Vectors Point; Urban by
Eucalup; weather by asianson.design; List by Richard Kunák; inequality by b farias.)
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Figure 2: The COVID-19 “Mobility Shock”. A Shows the percentage point difference in
time spent at home pre-shutdown and during the shutdown at the census block group level in
CA, with an inset for the Los Angeles region. B Shows the unequal mobility reductions for the
median of the upper and lower 10 percentiles of three different population subsets. Shading
indicates the 25th and 75th percentiles within each group. Vertical lines indicate the beginning
and end of the transition (March 4, 2020 and March 19, 2020) period excluded from our dynamic
analysis.Average pre-/post-shutdown percentages are given in Table S2.
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Figure 3: Impact of the economic shutdown on (left) PM2.5 concentrations and (right)
mobility. Points show heterogeneous changes across census block group characteristics estimated from
difference-in-differences models, along with 95% confidence intervals. Intervals that include zero indicate
that there was no differential reduction in exposures across the given gradient. A Changes in daily
PM2.5 concentration across the shutdown estimated for various socioeconomic variables. The coefficient
for mobility is the estimated difference between 0 and 100% of time spent at home; the coefficients for
(ln) income, road, and population density each represent the impact of an approximate doubling for
each variable. B shows similar estimates with mobility as the dependent variable. C and E Changes
in PM2.5 concentrations over the shutdown period across different racial and ethnic population shares,
estimated with different physical and socioeconomic control variables (labels on left). The coefficients
correspond to the expected changes between 0 and 100% population share at the census block group
level. See Tables S3-S4 for all values. D and F show similar estimates, but with mobility as the outcome
instead of PM2.5. Values are given in Tables S5-S6. All four panels compare the post-shutdown difference
from 2020 to 2019 to the pre-shutdown difference to account for seasonality. Additionally, estimates were
weighted to reflect the distribution of incomes, population shares and other location characteristics across
all block groups in California, and correct for the endogenous sampling of ground station locations (see
Figure S2B, Methods, and Supporting Information.) The ‘Base’ model include Census Block Group and
Day-of-Year fixed effects, as well as weather controls; other models incorporate the noted controls, or
exclude weather, and ‘All’ includes everything. 32
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Supplemental Text

Data and Methodology Details

California as a study location. California is uniquely well-suited context for this study: it is the

fifth largest economy in the world (81, 82); it is one of the most racially and ethnically diverse states

in the country (83), and one of only a handful in which non-Hispanic whites make up less than half

the population (44); it is home to four of the top 20 most populous U.S. cities (84); and despite

improvements in air quality in the late 1900s and early 2000s (85, 86), several California cities

still regularly rank as having the most polluted air in the United States (87). Finally, California

citizens live under a historically rich tapestry of environmental regulation – from the Clean Air

Act and its amendments at the federal level to local district level rules – that control air pollution

from essentially every source in the state. California also has a long history of environmental

activism by and on behalf of disadvantaged communities, which have historically experienced higher

pollution exposures (36). As such, it is a favorable location for trying to tease apart environmental

racism from the legacy of economic policy and other confounds that might also lead to disparate

environmental exposures.

However, we note that the use of California as a study region makes interpretation of our

results more straightforward than might be the case in other regions, or over larger spatial scales.

First, California’s mild climate and predictable seasonality makes it easier to compare two years of

observations than would be the case in more variable climates. Second, the lack of coal and fuel

heating oil use in California means that the regional (anthropogenic) aerosol chemistry is relatively

simple – California’s PM2.5 includes primary carbonaceous aerosols produced by transportation,
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and secondary nitrates produced by transportation and agriculture (88). There are relatively few

other primary sources of particulate matter in California compared to other regions, particularly

outside of the state’s summer-fall wildfire season, which contributes a large organic carbon burden

to the region (89). Our study location and timing also mean that satellite-based NO2 observations

are more highly correlated with PM2.5 than they would be in other locations, because the same

emissions sources contribute to both in the state (predominantly transportation and agriculture).

Studies in more complicated climates, and with a more diverse set of aerosol particulate matter (and

precursor) emissions will potentially require more sophisticated statistical techniques to address

potential unobserved sources of heterogeneity and to assess whether changes in pollution chemical

composition differ across population subgroups.

Overview of why the COVID-19 related economic slowdown offers new insight into questions

of environmental justice. Figure S1 compares several quantitative approaches to questions of

environmental justice present in the literature. Many environmental justice studies note, as

in Figure S1A or B, that at any given moment in time (a cross-sectional analysis), ambient

pollutant concentrations are higher for communities of color. Here, a best-fit line to cross-sectional

observations would lead to an estimate of ∆, or the expected difference in exposure between a 100%

Hispanic/Latinx community and a 100% non-Hispanic/Latinx community. Accounting for slower-

moving confounds in a multi-dimensional analysis, as in B, can change the estimate of ∆. In the case

shown, accounting for income can increase the estimate of ∆, if Hispanic/Latinx households tend

to have lower incomes than non-Hispanic/Latinx households. Many time-varying factors can also

confound this relationship. Importantly, expanding to panel (observations across time) analysis, as

in Figure S1C, allows inclusion of weather variables, and various time cycles known to contribute

to changes in pollution, like day-of-week and seasonal effects.

While panel studies allow for inclusion of time-varying covariates, it is still the case that the

economy (including both point and mobile sources that emit pollutants like primary PM and other

precursors that contribute to secondary PM formation), geography (where humans live, including

factors like population density and proximity to roads and other steady-state emissions locations),

and climate (annual weather cycle and associated daily and seasonal emissions) typically exist

together over a fairly narrow set of conditions. Populations change slowly over time, as does the

general structure of the economy. As such, even in panel analyses, it remains difficult to account for

enough factors such that residual exposure disparities can be confidently attributed to the broader

scale economy.

A large perturbation to the system, as the COVID-19 pandemic has created, moves one piece

of the system (the local and non-local in-person economy) far outside the historical experienced

conditions. This allows for a much more robust attribution of the change between pre- and post-

slowdown conditions to economic factors. The ability to additionally account for ‘own’ (or local)
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mobility further allows disaggregation of experienced disparities into those that might be caused

by geographic conditions (e.g., communities of color may need to commute more in general, or

may be more likely to be essential workers who cannot work from home) and general influence

of the broader scale economy. We explain below how this intuition also maps to a statistically

well-identified question.

Identification of heterogeneous treatment effects. Consider a simplified version of our specifications

in the main text with a single interaction of the treatment status (post-shutdown), dit, with a

binary, cross-sectional measure of differential exposure to the treatment, xi:

yit = τdit + γ(dit × xi) + zit + µi + λt + uit. (3)

where zit captures the effects of weather and other observed unit by time variation. All else is

defined as before, but note that yit is now in levels to further simplify the exposition. Using annual

differences does not fundamentally alter these results but changes all difference-in-differences (DID)

interpretations to a triple DID which allows for more complex forms of unobserved heterogeneity.

This set-up allows us to make two points:

1) With staggered treatment (dit 6= dt for all i) and no heterogeneity in the treatment effect

(γ = 0), τ̂ is a standard DID estimate. Differencing over time, rearranging and taking expectation

delivers

τ̂ = E[∆yit|∆dit = 1]− E[∆yit|∆dit = 0] = (τ + ∆zit + ∆λt)− (∆zit + ∆λt) = τ (4)

which can be written as ∆ȳtreat − ∆ȳcontrol. However, the overall treatment effect τ is not

statistically identified in our setting, where all observations after a particular calendar date are

treated, so that dit = dt for all i, and we do not observe any unit with ∆dit = 0. Hence, dt and

λt are perfectly collinear. Omitting the time effects, λt would lead us to be able to estimate τ but

would also lead us to mistakenly attribute state-wide shocks, ∆λt, to the treatment effect.

2) Without staggered treatment but heterogeneity in the treatment effect (γ 6= 0), we can

only identify the effect of the heterogeneous exposure, γ, relative to some baseline exposure captured

by τ . The treatment effect for each observation now becomes τ + γxi but τ is still collinear with

λt. With binary xi, the heterogeneous treatment effect is captured by

γ̂ = E[∆yit|∆dit = 1, xi = 1]− E[∆yit|∆dit = 1, xi = 0]

− {E[∆yit|∆dit = 0, xi = 1]− E[∆yit|∆dit = 0, xi = 0]}

= E[∆yit|∆dit = 1, xi = 1]− E[∆yit|∆dit = 1, xi = 0]

=(τ + γ + zit + ∆λt)− (τ + zit + ∆λt) = γ
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which is another DID estimate that compares the effect of the treatment in groups with xi = 1

to those with xi = 0. With continuous xi this becomes a generalized DID estimate, where we,

for example, compare the effect of the shutdown in block groups with a positive share of the

Hispanic/Latinx population to those without any Hispanic/Latinx residents.

Sensor placement and weighting. Unbiased estimates of experienced pollution changes require that

the sample of observations be random and representative. Yet it is well-understood that ground-

based monitors might be placed in a non-representative sub-sample of census block groups, as

government-funded CARB stations are relatively sparse, and PurpleAir monitors are privately

purchased and installed. We find that CARB monitor placement (intentionally) oversamples

California’s disadvantaged communities – these public monitors are more likely to be placed in

poorer, more rural, and more racially and ethnically diverse neighborhoods (Figure S12A-F). The

PurpleAir network is unsurprisingly slanted towards wealthier locations and under-represents the

Hispanic/Latinx population of California (Figure S12A-F). While both do not reflect the true

distribution of population characteristics, the sheer size of the Purple Air networks implies that it

spans a large variety of communities.

Choice-based sampling implies that monitor placement is correlated with the error term

of our regression equation. Estimation which ignores endogenous sampling is generally biased,

but consistent estimates can be obtained by weighting the regression function with the inverse

probability of selection (79). We use iterative proportional fitting—a standard post-stratification

procedure—to match the marginal distributions of the endogenous sample of monitors to known

census population margins. We determine the marginal distributions of the population by

computing the cell frequencies for each of the more detailed ACS variables used in the analysis

(the Hispanic/Latinx, Asian, and Black population shares, as well as income, road density and

population density) per vigintile (20 bins) of the census data. A process called ‘raking’ then finds

post-stratification weights which adjust the endogenous sample such that it resembles the set of

target distributions (Figure S12A-F). The process is able to fit individual distributions in our data

very well, but involves some trade-offs in terms of how well it matches any particular distribution

when more than one target variable is used. Calculating the inverse probability of selection directly

on a large contingency table would require a much coarser portioning of the data, resulting in

a substantially worse fit. All fixed effects regressions in the main text which use ground-based

monitors are estimated using weighted least squares if not otherwise noted.

We re-estimate impacts using several subsets of census block groups, including only CARB

monitors, only PurpleAir monitors, and both networks combined with and without weighting

(Figure S12A-F). While the racial disparities estimated in the weighted sample are consistent with

most unweighted samples (in the sense that the uncertainties overlap), there are important gains

from using both networks together and weighting the observations. The CARB-only estimates fail
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to detect significant differences in pollution for most variables, including income. The bias towards

more rural areas in the state’s CARB network manifests itself in large estimates for the effect of

road density on air pollution disparities. The unweighted distribution of the PurpleAir network

is usually closer to the distribution of the underlying population characteristic in the ACS data.

The sampled locations closely approximate the population distribution only once both networks are

combined and weighted. Using the weights increases the (absolute) size of the pollution disparity

estimated for Asian populations by about 41% and the effect of income by 29%.

We do not report results where we separately derive weights for the census block groups cover

by either the CARB or PurpleAir sensors. The selective placement of CARB sensors together with

their low number of observations in particular makes it impossible to derive weights which “undo”

the over-representation of disadvantaged communities (additional results are available on request).

We need both systems to cover the joint distribution of race/ethnicity, income, population density

and road density in California. We can, however, use the full distribution of weights to investigate

what these weights tell us about the potential for each set of monitors to provide information on

disparities. Figure S2C shows the distribution of weights across CARB and PurpleAir sensor types

and shows that more CARB sensors are highly upweighted by our weighting process than PurpleAir

sensors. This makes sense–given the endogenous placement of sensors discussed above and in the

main text–we should expect some CARB sensors to be deliberately placed where there are few

other monitors or in locations where residents would be unlikely to purchase a PurpleAir sensor.

We note that unlike the surface PM2.5 networks, NO2 satellite data cover the entire state

and are thus perfectly representative. However, a remaining potential sampling issue with satellite

data are biases related to missing data (for example, due to cloud screening in rainy seasons).

Figure S10 shows the distribution of observations in the satellite NO2 record. Some pixels (1km)

have have only a few observations, particularly in the pre-shutdown winter period, and areas that

tend to have cloudcover later in the spring (e.g., the Sierra Nevada range) also have more missing

observations. However because data are primarily missing for rural areas, this only translates into

5 census block group with available demographics but incomplete weekly NO2observations.

Selection of weather controls. We have included variables to control for temperature, relative

humidity, and precipitation in the same day (PM2.5 ) or week (NO2 ) as the dependent variable

measurement. Most importantly, these controls help reduce the variability caused by weather

differences between 2019 and 2020. For example, if areas with larger Asian populations also received

more rainfall in 2020 after the shutdown, we might mis-attribute the subsequent reduction in

PM2.5 concentrations to the shutdown rather than to the weather.

The form of the function which maps these three variables onto concentrations is unknown

to us, so we searched for a specification which had good out-of-sample performance, didn’t use too

many degrees of freedom, and where interacted fixed effects specifications contained few bins with
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only one observation (effectively dummying out that observation). This exercise sought to find a

well-fitting but not overfit specification that left enough observations for the main models to work

well, and that did not accidentally remove observations from geographic areas with extremes in one

or more of the variables.

Tables S10 and S11 as well as Figure S7 show the results of these specification searches.

The categories of functional forms that we tried included interacted fixed-width fixed effects (one,

two, five, ten, twenty) of native units, fixed effects created to split the data into evenly sized groups

(decile, vigintile), a cubic spline, polynomial fits (first, second, and third degree), uninteracted fixed

effects, and a specification with no adjustment. In the tables, we show each of the first four classes

of models using both 2019 and 2020 weather variables or only 2020 weather variables, meaning we

included one or both of f2020 (T,RH,P )it + f2019 (T,RH,P )it. To test the performance of each

specification we ran a regression of weather variables on pollutant using a randomly chosen 70% of

CBGs and tested the performance on the remaining 30%. Tables S10 and S11 show the average out

of sample mean squared error (MSE) for each specification across 100 random splits, the standard

deviation of those estimates (Std. Dev), the degrees of freedom used by each specification (DoF),

and the number of observations which are dummied out because they singularly correspond to a

fixed effect (Lost). Both tables are ranked from lowest to highest MSE.

Figure S7 panel B shows the distribution of MSE estimates across 100 70%/30% cross-

validations for each specification for PM2.5 and NO2. Panel A shows the coefficients from our

main model using a subset of the weather specifications. Our preferred specification is vigintile

fixed effects, interacted, for both 2019 and 2020. This specification minimized MSE in the

PM2.5 regressions and was second in NO2 regressions, while drastically reducing the degrees of

freedom used and the observations dummied out.

Race and ethnic group aggregation. There is important variation within racial and ethnic groups

not represented by the group aggregations evaluated in this study. Racial and ethnic groups were

not disaggregated into subgroups because of data availability and methodological suitability. Asian

subgroup identification, for example, is not available in the ACS at the CBG level, only at the tract

level. Even when summarizing Asian subgroups at the tract level, disaggregated population counts

are small. Even the largest Asian subgroups (Filipino and Chinese) would have fewer samples

than our current smallest primary group (Black). Therefore, Asian subgroup analyses would face

sampling issues from which we would be unable to draw clear conclusions using the methods in this

study. We already faced a similar issue with respect to sample size for Black populations (see main

text Results). Analyses of subgroup dynamics would be valuable, but our study does not employ

a design appropriate for that investigation.
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Additional discussion of mobility results

Consistent with other research (90–93), we find large differences in mobility across different

income and racial groups. Census block groups with high Hispanic/Latinx and Black populations

had smaller mobility reductions during the shutdown than predominantly non-Hispanic White

neighborhoods (0.8 pp for every 10 pp increase in the population share). However, these differences

can be completely accounted for by allowing for heterogeneous effects in income. This suggests

that mobility during the pandemic is mainly a function of the economic ability to stay home and

the probability of belonging to the essential workforce, rather than other characteristics associated

with different neighborhoods. This does not hold for block groups with a greater share of the Asian

population. Here we estimate a -0.20 pp decrease in mobility for a 10 pp increase in the census

block group Asian population share. The effect falls to -0.14 pp but remains highly significant even

after allowing for heterogeneous responses to other block group characteristics.
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Figure S1: Why the COVID-19 ‘shock’ offers new insight into questions of
environmental justice. For simplicity, imagine 5 communities across (e.g.) a state, represented
by the five colors here. These locations each have a different racial/ethnic composition,
represented here for simplicity in one dimension, as the share of the population that is
Hispanic/Latinx. Many observations of environmental injustice rely on cross-sectional analyses,
either (A) without or (B) accounting for potential slower-moving confounds. (C) However, many
high-frequency variables contribute to ambient pollution levels and might be correlated with
geography and socioeconomic variables; panel analysis with repeat observations over time allows
for inclusion of these types of covariates, and can thus account for the contributions that (e.g.)
natural weather patterns make to exposure disparities. However, even a panel analysis is subject
to potential confounding, and interpretation of residual exposure disparities as environmental
injustice caused by the economy remains problematic. The COVID-19 economic shock creates
a large perturbation that “turns off” a portion of the economy, and thus reveals the footprint
of pollution caused by that in-person economic activity. We test for whether this shock changes
exposure gradients (i.e., whether the shock looks like (D) or (E), and as such whether the in-
person economy is contributing to environmental racism. (F) The ability to account for mobility
in this framework further allows the separation of very local activity from broader activity (see
Supplemental Text). (For clarity, (G) shows the homogenous shock in time series.)
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Figure S2: PM2.5 networks and weights. A Location of public (California Air Resources
Board (CARB) and United States Environmental Protection Agency (EPA)) PM2.5 monitors,
as well as privately-owned PurpleAir PM2.5 monitors used in this study. B Weights used in
the model to better represent the Californian population. Each dot represents one census block
group. C Distribution of weights generated by the raking process, across sensor types.
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Figure S3: Summary of origin and race for California census block groups.
Distributions of (left panel) the percents of the total population categorized as White, Black,
Asian, and Hispanic/Latinx, and (right panel) the percents of either the Hispanic/Latinx or
non-Hispanic/Latinx portion of the total population categorized as White, Black, and Asian at
the census block group (CBG) level according to the Census Bureau’s American Community
Survey (ACS). The total number of CBGs was 23,212. Statistical outliers were included in the
distribution calculation, but excluded from the visualization.
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Figure S4: January-April 2019 PM2.5 and NO2 with increasing shares of census block
group income and racial makeup, without controlling for other sources of heterogeneity. The line
represents the best linear fit. (Fit values given in Table S1.)
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Figure S5: Same as Figure 3, but for weekly NO2 models. Since NO2 measurements are from
the TROPOMI satellite instrument, they cover all census block groups in California. Qualitative
differences between NO2 estimates (A,C,E) and Figure 3A,C,E thus represent a combination of
coverage, and differences in PM2.5 and NO2 distributions. Differences in mobility between these
estimates (B,D,F) and Figure 3B,D,F are due to coverage differences (representing mobility in all
census block groups here and mobility census block groups with Purple Air stations for Figure 3)
and weekly or rather daily analysis. Values of the coefficients in parts A and C are given in
Table S7 and part E in Table S8.

45



Figure S6: Same as Figure 3, but excluding Los Angeles County (A-D), the Central Valley (E-
H) and both (I-L). There is no change in patterns when re-estimating our models without these
regions highlighting that climate or demographic differences in these key regions is not a key
driver of the total observed differences.
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Figure S7: Choice of, and sensitivity to, weather controls specification. A Sensitivity
of main results (Figure 3 to different functional forms of climate variables (temperature,
precipitation, and relative humidity). B Mean squared error (MSE) of models fit with different
functional forms of weather controls and no other covariates, cross-validated, for both PM2.5 and
NO2 models (for additional details see the the Selection of weather controls section in the
supplement). Tables S11 and S10 show the MSE statistics for each specification, and the number
of observations dropped (due to unique weather controls values). We selected interacted vigintile
fixed effects as the optimal structure for this analysis based on the combination of lowest
MSE for PM2.5and very few dropped observations, even with full interactions of temperature,
precipitation, and relative humidity bins.
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Figure S8: Daily mean PM2.5 measurements from CARB and PurpleAir sensor networks
during the study period, in 2019 and 2020, after quality control filtering.
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Figure S9: Regression slopes of nearly co-located (< 100m) PurpleAir and CARB
PM2.5 measurements (2019 and 2020 Jan-Apr outdoor in CA) as a function of
distance between the PurpleAir and CARB sensors. Color indicates the correlation
coefficient. Marker size indicates the number of points used for the regression. The dashed
horizontal line indicates the median. Point size indicates number of points available for the
sensor pairs. The three panels show the same comparison with no correction (left), the RH
correction proposed in Tryner et al. (2020), and the EPA correction used in the study (right).
The RH correction may not be sufficient in our case because we use daily mean data. The EPA
correction we implement is conservative. Several PurpleAir sensors are paired with the same
CARB sensors (in one case as many as 32). 29 unique CARB sensors are represented here,
meaning they have a PurpleAir sensor within 100m. Three sensor pairs were excluded from the
figure because the correlation was very low (< 0.2).
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Figure S10: Map of the number of observations in the TROPOMI NO2product. For
the time periods pre-shutdown and shutdown for 2019 and 2020 the numbers of observations are
shown for each pixel (resolution 1 km). Please note that the pre-shutdown period is longer than
the shutdown period.

50



2020-01-01

2020-01-15

2020-02-01

2020-02-15

2020-03-01

2020-03-15

2020-04-01

2020-04-15

2020-05-01
80

60

40

20

0

20

40

60

%
 c

ha
ng

e:
 %

 o
f d

ay
 a

wa
y 

fro
m

 h
om

e

CA
 e

m
er

ge
nc

y

CA stay-hom
e

Bay Area
Central Coast
Central Sierra
Greater Sac
N. California
N. Sac Valley
S. Border
S. California
San Joaquin Valley

Figure S11: Regional mobility changes in CA. Percent change of mobility is shown for
nine regions of CA relative to the mean mobility of each region in January 2020. The urban
regions like the Bay Area, Southern CA, and the Southern Border show the largest mobility
decrease during the shutdown. The onset of mobility decline occurred essentially simultaneously
throughout the state.
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Figure S12: Monitor locations, weighting, and influence on impact estimates. The
public (CARB) and private (PurpleAir) PM2.5 sensor networks used in this study are not
evenly distributed across the state, which affects how different census block groups contribute
to estimated impacts. On the left we show post-shutdown concentration changes across
various census block group gradients (as in Figure 3), but estimated using different samples
– the public CARB network only (green), the private PurpleAir network only (purple), both
together but unweighted (brown), and both together and weighted (red). (These weighted
estimates correspond to the estimates presented in Figure 3.) The panels on the right show the
representation of demographic and geographic features due to sensor placement by the different
sensor networks. Compared to the distribution of these features by all census block groups
in California (black lines), the distribution of census block groups with CARB or PurpleAir
monitors can be quite different. The distribution of CARB and PurpleAir combined after
weighting (red) matches the all-group state-wide distribution much more closely (see Methods).
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Difference Unit Pollutant per category
-1.883 µg

m3 PM2.5 unit increase ln(median income)
0.065 µg

m3 PM2.5 % increase Hispanic/Latinx
0.052 µg

m3 PM2.5 % increase Black
insignificant µg

m3 PM2.5 % increase Asian

-8.778 µmol
m2 NO2 unit increase ln(median income)

0.740 µmol
m2 NO2 % increas Hispanic/Latinx e

0.809 µmol
m2 NO2 % increase Black

0.400 µmol
m2 NO2 % increase Asian

Table S1: Difference in 2019 cross-sectional pollution exposure relative to non-Hispanic White
populations. These values correspond to the slopes in Figure S4.

Racial/Ethnic category Percentile Pre-shutdown Post-shutdown % change
Hispanic 10 46.8 19.4 -59.7
Hispanic 90 53.7 39.4 -26.7
Asian 10 53.7 39.7 -26.2
Asian 90 46.1 18.4 -60.1
Black 10 48.6 29.3 -39.8
Black 90 54.0 38.2 -29.2

Table S2: Average pre-/post-shutdown percent of time spent away from home for the block
groups that most and least represent each racial/ethnic group. This table summarizes Figure 2
in the main text.
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Dependent variable: Difference in PM2.5 [µg m−3]

(1) (2) (3) (4) (5) (6) (7)

Mobility −0.257 0.217 −0.107
(0.154) (0.214) (0.158)

Income 0.587 0.989 0.544
(0.167)∗∗∗ (0.231)∗∗∗ (0.176)∗∗∗

Road Density 0.010 0.111 −0.004
(0.018) (0.033)∗∗∗ (0.017)

Population Density 0.103 −0.113 0.081
(0.056)∗ (0.110) (0.055)

% Hispanic/Latinx −2.759 −2.739 −2.239 −2.759 −2.908 −3.124 −2.386
(0.216)∗∗∗ (0.216)∗∗∗ (0.298)∗∗∗ (0.216)∗∗∗ (0.234)∗∗∗ (0.708)∗∗∗ (0.321)∗∗∗

% Asian −1.832 −1.883 −1.997 −1.854 −2.143 −3.481 −2.244
(0.530)∗∗∗ (0.513)∗∗∗ (0.423)∗∗∗ (0.528)∗∗∗ (0.435)∗∗∗ (1.072)∗∗∗ (0.357)∗∗∗

% Black −0.224 −0.203 0.221 −0.239 −0.452 1.193 0.022
(0.810) (0.807) (0.809) (0.799) (0.789) (1.144) (0.799)

CBG FEs X X X X X X X
Day FEs X X X X X X X
f 2019 (T,RH,P ) X X X X X – X
f 2020 (T,RH,P ) X X X X X – X
Observations 72,953 72,953 72,953 72,953 72,953 72,953 72,953

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S4: Results of our PM2.5regressions compare the post-shutdown difference from 2020
to 2019 to the pre-shutdown difference. The columns correspond to Figure 3E. Mobility is
represented as percentage of time spend away from home and coefficients are the estimated
difference between 0 and 100%. The coefficients for income, road density and population
density correspond to one logarithmic unit, while the coefficients for our demographic variables
correspond to changes between 0 and 100% population share. The regressions are run for seven
models: no control variables, controlling for mobility, controlling for income, controlling for
road density, controlling for population density, controlling for everything but excluding weather
effects, and controlling for all and weather effects.
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Dependent variable: Difference in Mobility (% away from home)

(1) (2) (3) (4) (5) (6)

Income −0.108 −0.106 −0.104
(0.009)∗∗∗ (0.010)∗∗∗ (0.010)∗∗∗

Road Density −0.004 −0.001 −0.002
(0.002)∗∗ (0.002) (0.002)

Population Density −0.013 −0.008 −0.008
(0.003)∗∗∗ (0.003)∗∗ (0.003)∗∗

% Hispanic/Latinx 0.081 −0.015 0.080 0.099 −0.020 −0.001
(0.021)∗∗∗ (0.023) (0.021)∗∗∗ (0.020)∗∗∗ (0.031) (0.023)

% Asian −0.200 −0.170 −0.193 −0.162 −0.160 −0.144
(0.052)∗∗∗ (0.024)∗∗∗ (0.051)∗∗∗ (0.049)∗∗∗ (0.026)∗∗∗ (0.025)∗∗∗

% Black 0.083 0.001 0.088 0.111 0.004 0.023
(0.046)∗ (0.048) (0.046)∗ (0.046)∗∗ (0.055) (0.051)

CBG FEs X X X X X X
Day FEs X X X X X X
f 2019 (T,RH,P ) X X X X – X
f 2020 (T,RH,P ) X X X X – X
Observations 72,953 72,953 72,953 72,953 72,953 72,953

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S6: Results of our mobility regressions compare the post-shutdown difference from 2020
to 2019 to the pre-shutdown difference. The columns correspond to Figure 3F. The coefficients
for income, road density and population density correspond to one logarithmic unit, while the
coefficients for our demographic variables correspond to changes between 0 and 100% population
share. The regressions are run for six models: no control variables, controlling for income,
controlling for road density, controlling for population density, controlling for everything but
excluding weather effects, and controlling for all and weather effects.
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Dependent variable: NO2 [µmol/m2]

(1) (2) (3) (4) (5) (6) (7)

Mobility 0.484 6.374 2.056
(1.608) (1.792)∗∗∗ (0.783)∗∗

Income 4.653 −0.546 4.211
(3.452) (5.198) (3.158)

Road Density 0.390 2.949 0.448
(0.198)∗ (0.618)∗∗∗ (0.094)∗∗∗

Population Density −1.516 −7.076 −1.620
(0.463)∗∗∗ (2.101)∗∗∗ (0.361)∗∗∗

% Hispanic/Latinx −6.686 −6.740 −2.304 −6.517 −3.821 −24.951 0.309
(2.686)∗∗ (2.670)∗∗ (3.215) (2.581)∗∗ (2.427) (6.679)∗∗∗ (3.178)

% Asian −22.275 −22.245 −22.105 −22.910 −19.090 −45.002 −19.320
(3.524)∗∗∗ (3.524)∗∗∗ (3.492)∗∗∗ (3.660)∗∗∗ (3.318)∗∗∗ (11.666)∗∗∗ (3.368)∗∗∗

% Black 3.086 3.029 8.221 3.103 6.187 −8.075 10.822
(6.157) (6.259) (8.796) (6.146) (6.415) (7.285) (8.470)

CBG FEs X X X X X X X
Day FEs X X X X X X X
f 2019 (T,RH,P ) X X X X X – X
f 2020 (T,RH,P ) X X X X X – X
Observations 337,255 337,255 337,255 337,255 337,255 337,256 337,255

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S8: Same as Table S4, but for weekly NO2 models. The columns correspond to Figure
S5E.
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Dependent variable:

Difference in PM2.5[µg m−3] PM2.5in 2020
(1) (2) (3) (4) (5) (6)

Mobility −0.217 −0.107 −0.221 −0.307
(0.139) (0.158) (0.172) (0.191)

Income 0.423∗∗∗ 0.544∗∗∗ 1.069∗∗∗ 1.348∗∗∗

(0.129) (0.176) (0.192) (0.294)
Road density 0.004 −0.004 0.013 −0.001

(0.022) (0.017) (0.033) (0.026)
Population density 0.052 0.081 −0.228∗∗∗ −0.120∗∗

(0.040) (0.055) (0.049) (0.059)
% Hispanic/Latinx −2.645∗∗∗ −2.288∗∗∗ −2.386∗∗∗ −3.238∗∗∗ −1.765∗∗∗ −1.873∗∗∗

(0.268) (0.293) (0.321) (0.478) (0.496) (0.554)
% Asian −0.949 −1.595∗∗∗ −2.244∗∗∗ −0.508 −0.529 −1.436∗∗

(0.572) (0.396) (0.357) (0.865) (0.553) (0.580)
% Black −0.639 −0.548 0.022 −2.288 −0.615 −1.107

(0.962) (0.955) (0.799) (1.399) (1.232) (1.426)

Weighted – – X – – X
CBG FEs X X X X X X
Day FEs X X X X X X
f 2019 (T,RH,P ) X X X – – –
f 2020 (T,RH,P ) X X X X X X
Observations 72,953 72,953 72,953 72,953 72,953 72,953

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S9: PM2.5 2020-2019 difference vs 2020 values for all of California. Results of three
PM2.5 regressions: without controls or weights, with controls and without weights, and with
both controls and weights. The first three columns correspond to the estimates in the paper,
the second three columns estimate the same quantities using only 2020 data. The dependent
variable is the level of PM2.5 rather than the inter-annual difference, and mobility corresponds
to the level of mobility rather than the difference. We only include 2020 weather variables in
columns 3-6 rather than the both years. The estimates have slight differences in magnitude but
are the same sign and significance level in both specifications. This has two implications. First,
the weather controls do a good enough job that differencing out the previous year does not make
an enormous difference, though it does add precision to the estimates. Second, it is possible to
consistently estimate these effects without access to previous years data.
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Rank Model MSE (1e-11) Std. Dev. (1e-11) DoF Lost
1 by 1 144.0 2.2 14567 4269
2 by vigintile 184.0 2.7 7467 612
3 by 2 216.1 3.0 3870 865
4 by decile 246.4 3.5 1350 26
5 by vigintile 2020 295.7 4.2 3659 315
6 by 1 2020 299.1 14.8 5458 1453
7 uninteracted 317.1 4.3 317 8
8 by 5 320.0 4.3 519 48
9 by decile 2020 344.8 4.9 668 13

10 cubic spline 2020 357.3 11.0 43 0
11 by 2 2020 388.8 5.6 1310 209
12 by 10 390.6 5.5 107 5
13 by 5 2020 422.7 6.2 168 13
14 by 10 2020 442.9 6.5 34 2
15 by 20 447.8 6.6 29 0
16 cubic spline 457.3 13.9 22 0
17 Poly 1 460.0 6.2 7 0
18 by 20 2020 461.3 7.0 11 0
19 Poly 2 2020 479.8 6.9 10 0
20 Poly 1 2020 488.3 7.6 4 0
21 base 489.5 7.6 1 0
22 Poly 3 2020 503.6 6.7 19 0
23 Poly 3 800.3 13.8 64 0
24 Poly 2 815.8 16.1 28 0

Table S10: NO2 selection of weather controls according to MSE criterion
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Rank Model MSE Std. Dev. DoF Lost
1 by vigintile 22.2 1.3 4116 418
2 by decile 22.6 1.3 739 13
3 by 2 22.8 1.2 6111 2434
4 by 5 23.4 1.4 1114 259
5 cubic spline 23.8 1.4 22 0
6 uninteracted 23.8 1.4 482 40
7 by 1 23.8 1.2 16477 8982
8 by 10 23.9 1.4 269 34
9 by vigintile 2020 25.2 1.4 2040 160

10 by 2 2020 25.5 1.4 2181 911
11 by 20 25.6 1.5 62 6
12 by 1 2020 25.7 1.4 6152 3674
13 by decile 2020 25.7 1.5 362 7
14 by 5 2020 26.0 1.5 407 91
15 cubic spline 2020 26.1 1.5 43 0
16 by 10 2020 26.3 1.5 97 12
17 Poly 1 26.6 1.4 7 0
18 by 20 2020 26.8 1.5 25 3
19 Poly 2 2020 27.0 1.5 10 0
20 Poly 3 2020 27.2 1.4 19 0
21 Poly 1 2020 27.9 1.6 4 0
22 base 29.0 1.6 1 0
23 Poly 2 32.1 2.4 28 0
24 Poly 3 34.1 2.4 71 0

Table S11: PM2.5 selection of weather controls according to MSE criterion
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