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Abstract

This paper proposes a new framework for poverty accounting, that is, the

decomposition of poverty into its proximate components. Using aggregated

household surveys from 124 countries, we estimate the potential impacts of income

growth and redistribution on poverty reduction, as well as their actual contributions

to poverty reduction over the period from 1981 to 2010. Our fractional response

approach shows that the potential impacts are highly non-linear and vary across

regions and time. This non-linearity needs to be taken into account if empirical

estimates are to inform development policy. Although historically growth has

played the main role in poverty reduction, we find that initial inequality is a strong

moderator of the impact of growth. In fact, there has been a shift towards pro-poor

growth around the turn of the millennium, both at the $2 and at the $1.25 a day

poverty line. Nevertheless, our projections of poverty rates until 2030 show that

the end of extreme poverty within a generation, as put forth in the Sustainable

Development Goals, is unlikely to materialize.
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1 Introduction

How long will it take for economic growth to eradicate poverty? This question is at

the heart of the ongoing debate about inclusive growth and equitable development.

Okun’s equity-efficiency trade-off, which for several decades seemed to override fairness

concerns, has recently lost ground to a renewed focus on ‘pro-poor growth’ (World Bank,

2005) and ‘shared prosperity’ (World Bank, 2015). The shift in the policy discussion is

supported by an increasingly large empirical literature analyzing the impact of changes

in income and inequality on poverty, and their respective contributions towards poverty

reduction.1 Collectively, these studies not only confirm that income growth is crucial

to sustained decreases in poverty, but also establish that the beneficial effect of growth

strongly depends on the initial levels of income and inequality.2

In this paper we present a new framework for poverty accounting. Analogous with

growth and development accounting, poverty accounting is the decomposition of (changes

in) poverty into its proximate sources. It addresses questions such as, what is the impact

of a one percent rise in average income or reduction in inequality on poverty rates? How

much of the historical variation in poverty was due to economic growth, and how much

to redistribution? While it is an established fact that changes in poverty rates are linked

to changes in average incomes and the income distribution, there is no consensus on the

appropriate functional form.

The cross-country literature usually approximates the relationship between poverty,

average income and the income distribution using log-linear models with ad hoc

interaction terms. The resulting fit is always moderate and the estimates are plausible

for overall mean effects only. To policy makers, the mean effect is of limited interest since

it is well known that, even within a country, growth can have a very different impact on

poverty across regions or ethnic groups (Aaron, 1967, Hoover et al., 2008).

Our framework builds on the fractional response approach developed by Papke and

Wooldridge (1996, 2008). The fact that the poverty headcount ratio is a fraction leads

to a natural model of the expected poverty rate, E[H], given a fixed (absolute) poverty

line, z. This model incorporates two crucial features: first, E[H] is bounded on the unit

interval; and second, E[H] converges to zero (unity) if mean income becomes arbitrarily

large (small) relative to the poverty line. It follows that elasticities and semi-elasticities

of poverty with respect to income and inequality are highly non-linear. A central

contribution of our paper is that we demonstrate the variety of analyses which can be

consistently carried out using this framework. Specifically, we (i) estimate elasticities and

semi-elasticities of poverty that remain plausible over the entire range of the data, (ii)

1See, for example, Ravallion and Chen (1997), Dollar and Kraay (2002), Besley and Burgess (2003),
Kraay (2006), Kalwij and Verschoor (2007), and Dollar et al. (2016).

2In fact, this dependence arises mechanically, since poverty is functionally linked to average income
and inequality (Datt and Ravallion, 1992, Kakwani, 1993, Bourguignon, 2003).
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recover the conditional expectation function of the poverty headcount ratio, (iii) estimate

the counterfactual quantities needed to compute the historical contributions of growth

and redistribution to poverty reduction, and (iv) produce out-of-sample forecasts.

Estimating any poverty decomposition using summary household survey data entails

a number of practical difficulties. A second contribution of this paper is that we

extend the fractional response model to resolve three difficulties commonly encountered

in applications: unobserved heterogeneity due to persistent measurement differences

between surveys, unbalanced panel data due to infrequently undertaken surveys, and

endogeneity due to time-varying measurement errors in per capita income or expenditure.

Our third and most substantive contribution is to apply the new framework to a

large data set covering 124 countries over a 30-year period, in order to draw lessons for

the future design of poverty reduction policies. In their most basic form, the data only

contain three variables per country-survey-year: the poverty headcount ratio at a fixed

international poverty line, average income or consumption expenditures, and the Gini

coefficient. We demonstrate that our approach closely approximates the shape of the

Lorenz curve near the poverty line using this limited information set.

Overall, we find that a one percent increase in mean income reduces the proportion of

people living below the poverty line by about two percentage points, while a one percent

increase in inequality raises the poverty rate by one and a half percentage points. We

present estimates by region and time period, providing a basis for differentiated policy

design. Regarding the historical contributions, we discover a shift in the poverty reducing

pattern of growth around the turn of the millennium. Until 2000, about 90% of poverty

reduction was due to income growth, and inequality tended to rise with higher growth

rates. Since 2000, changes in inequality contributed almost a third to poverty reduction,

and growth is no longer associated with rising inequality. We also present projections of

the poverty headcount ratio until 2030 for two poverty lines: $2 a day and $1.25 a day

(in 2005 PPPs). The $2 a day poverty rate is likely to halve from about 40% in 2010 to

below 20% in 2030, suggesting a billion people are being lifted out of poverty. At $1.25

a day, however, the pace of poverty reduction is bound to slow down considerably.

Before we proceed, note that, just as growth accounting is silent on what ultimately

drives growth, poverty accounting does not identify the ultimate determinants of poverty.

Instead, it reveals how given changes in aggregate income and distribution translate into

poverty outcomes. The causal effect of specific policies cannot be deduced from the

decomposition of poverty into its proximate sources of change.

The remainder of the paper is organized as follows. Section 2 reviews how the

existing literature decomposes poverty rates and estimates poverty elasticities. Section 3

introduces our approach and the econometrics of fractional response models. Section 4

briefly outlines the data used in this paper. Section 5 presents estimation results,

elasticities, contributions, and poverty projections until 2030. Section 6 concludes.
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2 Poverty decompositions and elasticities

We begin with a review of standard concepts and models used in the literature on poverty

decompositions.

The poverty headcount ratio in some country at time t is defined as

Ht = H(ȳt/z, Lt) ≡ Pr{yt ≤ z} (1)

where ȳt/z is the (relative) distance of mean income, ȳt, to the (fixed) poverty line, z; Lt

is the Lorenz curve describing the entire income distribution; and yt is the income of an

individual drawn randomly from the population. Eq. (1) represents the probability that

a random individual is poor, as a function of the mean level and distribution of income,

as summarized by ȳt and Lt. We may speak of a ‘shortfall’ of income when ȳt < z and of

‘affluence’ when ȳt > z.

With micro-level data on incomes or consumption expenditures it is straightforward to

decompose changes in Ht into changes in ȳt and Lt (Datt and Ravallion, 1992, Kakwani,

1993).3 Across countries, however, the underlying surveys are often not available but

condensed in the form of tabulated (grouped) data. To overcome this limitation,

Bourguignon (2003) suggests the adoption of a log-normal income distribution. This

assumption is theoretically grounded and popular, yet it does have critics (e.g. Bresson,

2009) and will be relaxed later.

If individual income, yt, is a log-normal random variable with ln yt ∼ N (µt, σ
2
t ), then

mean income can be written as ȳt = E[yt] = exp(µt + σ2
t /2), and the poverty headcount

ratio at time t is

Ht = Φ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(2)

where Φ(·) denotes the standard normal cdf. The income distribution is entirely

determined by the standard deviation of log-income, σt. The derivatives of eq. (2) can

be rearranged to yield the income and inequality elasticities of poverty, so that

εHȳt ≡
∂Ht

∂ȳt

ȳt
Ht

= − 1

σt
λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(3)

and

εHσt ≡ ∂Ht

∂σt

σt
Ht

=

(
ln(ȳt/z)

σt
+

1

2
σt

)
λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(4)

3A viable alternative to our method is to apply the micro-level approach to all countries by creating
synthetic data as in Kraay (2006). It should be noted, though, that Lorenz curve estimation based on
grouped data has its own problems (see Chotikapanich et al., 2007, Bresson, 2009, Krause, 2014).
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where the inverse Mills ratio, λ(x) ≡ φ(x)/Φ(x), is defined as the ratio of the standard

normal pdf to the standard normal cdf, and we require Ht > 0. These analytic formulas

inspired the econometric models of, among others, Bourguignon (2003), Kalwij and

Verschoor (2007), and Klasen and Misselhorn (2008). To see this, note that the poverty

rate can be decomposed in proportional terms using a Taylor linearization

dHt

Ht

≈ εHȳt
dȳt
ȳt

+ εHσt
dσt
σt

(5)

where dHt/Ht, dȳt/ȳt and dσt/σt are small relative changes in Ht, ȳt and σt, respectively.

Aitchison and Brown (1957) showed that, under log-normality, the standard deviation is

a monotone transformation of the Gini coefficient of income inequality, Gt, namely

σt =
√

2Φ−1(Gt/2 + 1/2). (6)

Eqs. (3) and (4) can therefore be used to estimate the elasticities using observed values

of income and the Gini coefficient. With a little algebra, it is straightforward to derive

an expression for the Gini elasticity and rewrite eq. (5) accordingly.

In empirical applications the poverty headcount equation is (usually) formulated

in annualized differences, and the dependence of the elasticities on mean income and

inequality is captured through interaction terms involving initial mean income and initial

inequality. The result is what Bourguignon (2003) calls the ‘improved standard model’:

∆ lnHit = α + β1∆ ln ȳit + β2∆ ln ȳit × ln(ȳi,t−1/z) + β3∆ ln ȳit × lnGi,t−1

+ γ1∆ lnGit + γ2∆ lnGit × ln(ȳi,t−1/z) + γ3∆ lnGit × lnGi,t−1 + εit
(7)

where ∆ is the first-difference operator, α is a linear time trend, and εit is an error term;

we also inserted the country subscript i.

The interaction terms in eq. (7) imply variable elasticities. The partial derivatives,

εHȳit = β1 + β2 ln(ȳi,t−1/z) + β3 lnGi,t−1 and εHGit = γ1 + γ2 ln(ȳi,t−1/z) + γ3 lnGi,t−1, are

sometimes referred to as the ‘distribution-neutral’ income elasticity and the ‘growth-

neutral’ inequality elasticity. They serve as linear approximations to eqs. (3) and (4),

offering simplicity but ignoring meaningful restrictions on the parameter space. In view

of the bounded nature of the dependent variable (Hit ∈ [0, 1]), the functional form of

the elasticities is predictably non-linear. Linear approximations must be poor for certain

combinations of income and inequality away from the center. Yet to guide development

policy we are precisely interested in regionally and temporally differentiated elasticities.

Eq. (7) has several other disadvantages. Differencing disregards the information

contained in poverty levels, induces negative serial correlation, and is likely to compound

measurement error.4 The logarithmic transformation of Ht excludes poverty spells

4Consider a typical equation with well-behaved disturbances but a single serially correlated regressor
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starting or ending with a zero, but discarding or modifying them affects consistency. The

log transformation also makes it impossible to recover the conditional expectation of Ht

except under strong independence assumptions, but the conditional expectation of Ht is

what we need to compute counterfactuals and contributions to poverty reduction.5 More

subtly, it is unclear which level relationship might underlie eq. (7). Whereas differencing

removes time-constant unobserved effects, the inserted interaction terms reintroduce the

unobserved effects through the lagged levels. As a result, any systematic measurement

difference between countries will bias the estimated coefficients.6

Last but not least, note that elasticities can paint a distorted picture of poverty

dynamics. The income elasticity, for example, gives the impression that richer countries

become ever better at poverty reduction because a drop in the poverty headcount from 2%

to 1% is treated as equivalent to a drop from 50% to 25%. Hence, Klasen and Misselhorn

(2008) recommend to focus on absolute changes in poverty rates. Removing the log

from the headcount in eq. (7) achieves this. The partial effects become semi -elasticities,

measuring percentage point changes in the number of poor expected for a given percentage

change in income or inequality. Likewise, eqs. (3) and (4) provide semi-elasticities if we

replace the inverse Mills ratio with the standard normal pdf. In contrast with elasticities,

the semi-elasticities converge to zero as mean income becomes very large (or very small).

For a policy maker who is concerned about the number of poor in the population, the

semi-elasticities are the relevant parameters.

3 Fractional response models of poverty

3.1 Fractional probit

We now outline an approach to poverty accounting that does not suffer from the problems

listed above. In a seminal paper, Papke and Wooldridge (1996) suggested modeling

proportions using non-linear, parametric, fractional response models, known since as

fractional logit, fractional probit etc. To the best of our knowledge, this idea has never

been applied to poverty decompositions. The models are of the form E[yi|xi] = F (x′iβ),

where yi ∈ [0, 1] and F (·) is an invertible cdf, such as the standard normal. Thus we

assume that the mean headcount ratio can be described by

E[Hit|ȳit, Git] = Φ(α + β ln ȳit + γ lnGit) for i = 1, . . . , N ; t = 1, . . . , T (8)

affected by serially uncorrelated measurement error. It can be verified that first-differencing not only
induces negative serial correlation in the disturbance term, but also magnifies attenuation bias.

5Moreover, as Santos Silva and Tenreyro (2006) point out for the case of gravity models,
heteroskedasticity in the level equation causes bias in the parameter estimates after taking logs.

6As a case in point, Kalwij and Verschoor (2007) present a model in differences with unobserved
effects removed, but later estimate interaction models with unobserved effects again present though not
accounted for.
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where ln z is absorbed into the constant and both explanatory variables are expressed in

logs to linearize the index and ease interpretation.7 Naturally, we expect β < 0 and γ > 0.

We will temporarily ignore econometric complications such as unobserved heterogeneity,

unbalanced data and endogeneity, to be discussed later.

[Figure 1 about here]

Eq. (8) may be rewritten as Φ−1 (E[Hit|ȳit, Git]) = α+ β ln ȳit + γ lnGit, where Φ−1(·)
plays the role of a ‘link function’ in the spirit of the Generalized Linear Model (GLM)

literature. Figure 1 plots Φ−1(Hit) against ln ȳit per region, including a regression line.

It is striking how closely the inverse normal cdf linearizes the relationship.8 Rather than

transforming the data, though, it is preferable to estimate the conditional expectation

function given in eq. (8) directly. A suitable method is Quasi Maximum Likelihood

(QML) using a Bernoulli likelihood. QML is as robust as non-linear least squares, but

potentially more efficient. Most importantly, it only requires correct specification of the

conditional mean, irrespective of the true distribution of Hit (Gourieroux et al., 1984).

Plugging in the QML estimates, the income and Gini elasticities are as follows

ε̂Hȳit =
∂Ê[Hit|ȳit, Git]

∂ȳit
× ȳit

Ê[Hit|ȳit, Git]
= β̂ × λ

(
α̂ + β̂ ln ȳit + γ̂ lnGit

)
(9)

and

ε̂HGit =
∂Ê[Hit|ȳit, Git]

∂Git

× Git

Ê[Hit|ȳit, Git]
= γ̂ × λ

(
α̂ + β̂ ln ȳit + γ̂ lnGit

)
. (10)

Eqs. (9) and (10) closely mimic the properties of the analytical elasticities derived from

the log-normality assumption in eqs. (3) and (4). They will approach zero whenever

the inverse Mills ratio approaches zero, and remain plausible for extreme values of the

covariates. The non-linearity arises directly from the bounded nature of the headcount

ratio. This secures a number of advantages: the information contained in poverty levels

is not wasted, the model will predict poverty headcount ratios strictly within the unit

interval, and elasticities as well as semi-elasticities are estimated consistently. By plugging

counterfactual values for ȳit and Git into Ê[Hit|ȳit, Git], we can estimate the respective

contributions of growth and redistribution to poverty reduction. Similarly, given growth

and inequality scenarios, we can predict the future path of poverty rates.

Note that we do not require log-normality. Any two-parameter distribution will do, as

long as the poverty headcount remains a smooth function of mean income and inequality,

7Simulations (analogous to those presented in Table C-2 of Online Appendix C) suggest that using
logs greatly improves the ability of the model to accurately recover known (semi-)elasticities.

8The interactions used in the standard log-linear models do not fully capture this intrinsic non-
linearity. Figure A-2 in Online Appendix A shows the same graph using the log of the Gini coefficient.

7



up to statistical error. In fact, it is possible to nest the log-normal case within the GLM.9

3.2 Heterogeneity, unbalanced data, and endogeneity

We now discuss the three technical problems we encounter in our application: unobserved

heterogeneity, unbalanced data, and measurement error. For the purpose and duration of

this subsection, we stack the time-varying covariates and their coefficients in the vectors

xit = (xit,1, . . . , xit,K)′ and β = (β1, . . . , βK)′, and form the matrices Xi = (xi1, . . . ,xiT )′.

The ideal model we would like to estimate is

E[Hit|Xi, ηi] = E[Hit|xit, ηi] = Φ(x′itβ + ηi) for i = 1, . . . , N ; t = 1, . . . , T (11)

where the covariates are strictly exogenous conditionally on unobserved country-level

effects ηi, and the panel is balanced. The unobserved effects are meant to capture time-

persistent differences in measurement or deviations from a two-parameter distribution,

which may be arbitrarily correlated with elements of Xi. The problem, in our small

T , large N context, is that the ηi are incidental parameters and cannot be consistently

estimated. The estimation of β as well as all partial effects is affected.10

As a solution, Papke and Wooldridge (2008) propose a correlated random

effects (CRE) structure, using the Mundlak (1978) and Chamberlain (1984) device:

ηi|(xi1, . . . ,xiT ) ∼ N (ϕ + x̄′iθ, σ
2
u) where x̄i = T−1

∑T
t=1 xit contains time averages of all

time-varying regressors xit. Defining ui ≡ ηi−ϕ− x̄′iθ, it follows that ui|(xi1, . . . ,xiT ) ∼
N (0, σ2

u). Plugging this into eq. (11) and marginalizing with respect to ui, we obtain

what is known in the GLM literature as a ‘population-averaged model’

E[Hit|Xi] = E[Φ(ϕ+ x′itβ + x̄′iθ + ui)|Xi] = Φ (ϕu + x′itβu + x̄′iθu) . (12)

The subscript u indicates that the coefficients have been rescaled by the factor (1+σ2
u)
−1/2.

The scaled coefficients and average partial effects (APEs) of all time-varying covariates

are identified and can be consistently estimated.11 Note that the linear counterpart of

this specification would deliver estimates which are numerically identical to those of a

standard fixed-effects model.

A second difficulty is to account for unbalanced data.12 Let Ti denote the sample

size for country i, with T = maxi Ti, and let the selection of observations, as recorded by

selection indicators sit, be ignorable (conditionally independent). Unbalancedness implies

9A dedicated section of Online Appendix B discusses this aspect in more detail.
10The biases decrease as T gets larger, but there are no benchmark simulations for the fractional

probit case that we know of, and in our application the sample sizes are definitely small.
11As the method is QML, asymptotic standard errors based on the inverse information matrix will be

too conservative (see for details Papke and Wooldridge, 2008, and Wooldridge, 2010a). Standard errors
should be adjusted and made robust to clustering at the country level.

12Unbalancedness is a serious issue in our application, see Table A-1 in Online Appendix A.

8



that the heterogeneity depends on Ti. Wooldridge (2010a) argues that this dependence

can be captured by allowing both the mean and the variance of the unobserved country

effects, ηi, to differ per sample size. Hence we define T dummy variables δTi,` using the

Kronecker delta (δTi,` = 1 if Ti = ` and 0 otherwise). We include these dummies as well

as interactions with the time averages (δTi,`x̄
′
i) among the covariates in eq. (12), and scale

the argument of Φ(·) by the square root of Var(ηi) = exp
(

2
∑T−1

`=2 δTi,`ω`

)
, where the ω`

are unknown variance parameters. The result is the following heteroskedastic model

E[Hit|{sit, sitxit; t = 1, ..., T}] = Φ


x′itβh +

∑T
`=2 δTi,` (ϕh` + x̄′iθh`)

exp
(∑T−1

`=2 δTi,`ω`

)


 (13)

where the subscript h denotes a new scale factor and Ti ≥ 2. This specification nests the

balanced case. In that case, the numerator contains only one set of time averages and a

constant in addition to the time-varying covariates, and the denominator is unity.

Endogeneity due to measurement error in income or consumption expenditures adds

another layer of complexity. Ravallion (2003) and Deaton (2005), among others, discuss

the presence of systematic biases in survey means and variances. If such biases are

random (of the classical measurement error type), they attenuate the income coefficient,

but if they are survey-specific (non-classical), they may work in the opposite direction

(Ravallion and Chen, 1997). When income and poverty are estimated from the same

survey, then errors in the former entail errors in the latter. How inference is affected

depends on which type of error is stronger and how this spills over into other variables.13

Hence, like Ravallion (2001) and Kalwij and Verschoor (2007), we treat the observed

mean income (ln ȳit) as endogenous.

We cannot simply replace observed mean incomes by a projection in non-linear

models. Instead, we follow Heckman and Robb (1985) who describe an alternative

two-step ‘control function’ method analogous to the standard instrumental variable

method in linear models. Intuitively, rather than using the prediction, the reduced-form

residual of an endogenous regressor is included (as a ‘control’ variable) to capture the

endogenous variation in the equation of interest. Such a method is developed by Papke

and Wooldridge (2008) for balanced panels and can be extended to the unbalanced case.

We require m ≥ 1 time-varying external instruments, relevant but strictly exogenous

conditionally on the unobserved effects, which we arrange in vectors zit, with time

averages z̄i, and matrices Zi = (zi1, . . . , ziT )′ . The first step is to estimate a reduced form

ln ȳit = x′1itπ1 +z′itπ2 +
∑T

`=2 δTi,`(π0`+ x̄′iπ3`+ z̄′iπ4`)+νit, where x1it is xit excluding the

mismeasured ln ȳit but including time dummies, and x̄i includes the corresponding time

13Classical and non-classical measurement error in income may affect the Gini too (Chesher and
Schluter, 2002). We reach no simple conclusion about the direction of biases, but note that the correlation
between the Gini coefficient and average income in our sample is practically zero.
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averages. The second step is to estimate the population-averaged model conditioned on

the exogenous variables and the reduced-form residuals, ν̂it:

E[Hit|S] = Φ


x′1itβg + ψg ln ȳit + ρgν̂it +

∑T
`=2 δTi,`

(
ϕg` + x̄′iθg` + z̄′iζg`

)

exp
(∑T−1

`=2 δTi,`ω`

)


 (14)

where S = {sit, sitxit, sitzit; t = 1, ..., T}, the subscript g denotes another scale factor,

and Ti ≥ 2. Both steps use the Mundlak-Chamberlain device for all strictly exogenous

variables. Asymptotic standard errors can be approximated via a panel bootstrap.14 To

assess the endogeneity of ln ȳit in eq. (14) we test ρg = 0, which amounts to a Hausman

test of the augmented-regression type (see Hausman, 1978, Lin and Wooldridge, 2017).15

3.3 Elasticities and semi-elasticities

By plugging QML estimates into eq. (14) and averaging over the cross-sectional

dimension, we obtain what Blundell and Powell (2004) and Wooldridge (2010a,b) call

the Average Structural Function (ASF).16 The derivative of the ASF with respect to a

continuous variable is the Average Partial Effect (APE) of that variable. These APEs

rather than the model parameters are the quantities of interest. In our model, where ȳit

and Git appear in logs and do not show up in the variance function, the APEs correspond

to semi -elasticities. More formally, denote the linear predictors inside the cdf in eq. (14)

by m′it1ξ̂1 for the numerator and m′it2ξ̂2 for the denominator, then the estimated APE or

semi-elasticity for variable xk at time t is

APEt(xk) = η̂Hxkt = ξ̂1k ×N−1

N∑

i=1

exp
(
−m′it2ξ̂2

)
φ
(
m′it1ξ̂1/exp(m′it2ξ̂2)

)
. (15)

The elasticity (ε̂Hxkt ) is obtained by replacing φ(·) by λ(·) in eq. (15).

We conduct several Monte Carlo experiments studying the magnitude of the errors

in the estimated (semi-)elasticities and predicted poverty rates. Simulating data from

various known distributions, we find small approximation errors for the QML approach,

14We implement the method in a Stata module called fhetprob with analytic first and second
derivatives, see www.richard-bluhm.com/data/. An interesting extension is to let the conditional
variance depend on inequality, implying a marginal proportional rate of substitution (−εHȳt /εHGt ) that
is variable rather than constant.

15The test requires controlling for country-specific heterogeneity in ν̂it in order to separate endogeneity
due to correlation with the unobserved heterogeneity from endogeneity due to correlation with the time-
varying idiosyncratic error (Lin and Wooldridge, 2017). The term x̄′i in eq. (14) achieves this, since it
contains the individual time average of ln ȳit.

16The ASF deals with the unobserved effects, varying panel sizes, and endogeneity by averaging
eq. (14) over the cross-sectional dimension. Since the surveys are irregularly spaced and often cover only
parts of a given year, the time path of the ASF is hard to track. Hence we also average over time, and
obtain a single ASF for each variable of interest.
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irrespective of whether we focus on (semi-)elasticities or predicted poverty rates. The

traditional linear models make large errors with biases in the estimated (semi-)elasticities

exceeding 100% at very low or very high incomes. The results of these experiments are

summarized in Online Appendix C.

4 Data

We compile a data set covering 124 countries over 30 years (1981-2010), based on

household surveys from the World Bank’s PovcalNet database.17 Subsamples of this

data have been used in previous studies (e.g. Adams, 2004, Kalwij and Verschoor, 2007,

Chambers and Dhongde, 2011) and the World Bank’s methodology is described in detail

in Chen and Ravallion (2010). Here we will only mention its main features.

The information provided by PovcalNet consists of poverty headcount ratios (Hit),

per capita monthly income or consumption expenditures (ȳit), the Gini coefficient of

inequality (Git), and the total population (popit). We consider two different poverty

lines (z) widely used for international comparisons: z = $2 a day ($60.83 a month)

and z = $1.25 a day ($38 a month). The latter is typically used to assess extreme

poverty. In addition, we define dummy variables indicating whether ȳit denotes income

or consumption, and whether it is reported at the level of individual households or has

been tabulated for groups of households (deciles or finer quantiles). Reported poverty

rates tend to be lower in income surveys than in expenditure surveys, and the availability

of individual versus grouped data may explain other systematic differences. About 63%

of the data come from expenditure surveys and about 74% are estimated from grouped

data. All amounts are in constant international dollars at 2005 PPP-adjusted prices.

The surveys in the PovcalNet database are usually designed to be nationally

representative, but three large countries (China, India and Indonesia) keep urban and

rural surveys separate. To construct national series in those cases we weight the poverty

and income data using urban and rural population shares. Since the Gini coefficient is not

subgroup-decomposable, we estimate a national Gini coefficient via an approximation due

to Young (2011), based on a mixture of two log-normal distributions.18 If in a given year

only an urban or rural survey is available we drop it, except in the case of Argentina where

urbanization is close to 90% and we treat the urban series as nationally representative.

We end up with an unbalanced panel of 124 countries spanning 30 years, with an average

17The data is publicly available at http://iresearch.worldbank.org/PovcalNet (we used the 2005
PPP version). Per capita averages are simple averages without equivalence scaling.

18PovcalNet omits weighting some recent data. For the sake of consistency, we apply this
approximation in all cases where separate urban and rural surveys must be combined. The formula

is G =
∑K
i=1

∑K
j=1

wiwj ȳi
Ȳ

(
2K

[
ln ȳi−ln ȳj+ 1

2σ
2
i + 1

2σ
2
j

(σ2
i +σ2

j )1/2

]
− 1
)

, where K is the number of subgroups, wi is

the population share of the i-th subgroup, ȳi is its mean income, σ2
i is the corresponding income variance,

and Ȳ is the population-weighted mean income across subgroups.
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time series length (T̄ ) of about 6.5 surveys and a total of 809 observations. Table 1

provides summary statistics for the entire panel.19

[Table 1 about here]

The linear approximations used in the extant literature require data in differences

or log-differences. For the sake of comparison, we calculate annualized survey-to-

survey differences. Some of these differences coincide with switches between income and

expenditure surveys or changes in the level of aggregation; we exclude those and only

retain differences that are both income or expenditure based, and both derived from micro

data or tabulated data. Since differencing requires Ti ≥ 2 and we only use comparable

surveys, we end up with 648 differences from 104 countries. To estimate historical

contributions we reduce this data set further, keeping only the longest consecutive runs of

comparable surveys (yielding 123 observations). We later also consider two sub-periods,

preceding and following the year 2000 (yielding 87 observations in each).

Apart from the survey-based data, we collect consumption data from national

accounts, which will serve both as an instrument for survey income and as a basis for

the projections. Per capita personal consumption expenditures (PCE) are retrieved from

both the World Development Indicators (WDI) and the Penn World Table 7.1 (PWT)

and combined into a single series.20 Population projections for the period 2010-2030 are

taken from the World Bank’s Health, Nutrition and Population Statistics database.

5 Results

5.1 Regressions

Table 2 presents our main estimation results, with each specification addressing an

additional issue: unobserved effects, unbalancedness and measurement error, in that

order. All regressions include time averages à la Mundlak to capture measurement

differences across countries (unobserved effects), and survey type dummies (expenditures

or income, grouped or household data) to capture measurement differences across surveys.

In addition, a full set of year dummies allows for unspecified common time effects.

[Table 2 about here]

19Online Appendix A provides further summary statistics. Table A-1 illustrates the survey coverage
over time and indicates the different survey types. Table A-2 reports summary statistics by region.

20Monthly PCEPit is computed as (kcit/100× rgdplit/12), where kcit is the PWT consumption share
and rgdplit is GDP per capita (Laspeyres) in 2005 constant prices. PCEWit is WDI household final
consumption expenditures in 2005 prices divided by population and converted to monthly figures. The
‘merged’ series is constructed using the WDI as the default but replacing it with PWT data if coverage
over 1981-2010 is better.
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Column (1) includes correlated random effects, but ignores unbalancedness; see

eq. (12). The coefficients have the expected signs but an arbitrary scale, which is why the

adjacent column reports average partial effects (APEs) averaged over time. These APEs

should be interpreted as semi-elasticities. If mean income grows by one percent we expect

the poverty rate to go down by 0.284 percentage points, and if the Gini increases by one

percent we expect the poverty rate to go up by 0.232 percentage points. The corresponding

average elasticities have higher standard errors (se), and are about −1.83 (se = 0.084)

for average income and 1.50 (se = 0.167) for the Gini. Note that these values are close

to the lower end (in absolute value) of the range reported in the literature.21

This first specification could be affected by the severe unbalancedness of the panel and

the presence of measurement error in income. Column (2) addresses the unbalancedness

by including panel size dummies, interactions between the Mundlak time averages and

the panel size dummies, and a variance function (in the denominator, see eq. (13)). The

substantive conclusions hardly change. The APE of income remains almost identical and

the APE of inequality increases by less than one standard error. Thus, unbalancedness

seems to cause little bias on average, though it may still affect the (semi-)elasticities at

particular points in time and space.

Our preferred specification, column (3), is the empirical counterpart of the two-

step estimator presented in eq. (14). To account for measurement error (hence

endogeneity) in income, we instrument survey mean income or expenditure with per

capita consumption expenditures from the PWT national accounts (PCEP
it ). The main

identifying assumption is that any measurement error in per capita consumption from the

national accounts is uncorrelated with survey-based measurement error in mean income

or expenditures (see also Ravallion, 2003, Deaton, 2005).22

The evidence favors endogeneity in income (panel bootstrap t-stat ≈ 1.79), especially

if we ignore the first-stage sampling error which plays no role under the null hypothesis

of exogeneity (t-stat ≈ 2.04). The APE and income elasticity are now larger in absolute

value than in the previous two specifications (¯̂εHȳ ≈ −2.24, se = 0.244). A one percent

increase in average income raises the expected reduction in the poverty rate by 0.338

percentage points or 2.24 percent. We tentatively conclude that the coefficient of income

in columns (1) and (2) is attenuated. Attenuation seems to be more of a problem than

systematic survey bias, although we cannot rule out that more complex error structures

are at play. As expected, the APE and elasticity of inequality are practically unaffected

by this correction (¯̂εHG ≈ 1.70, se = 0.253).23

21The typical range for the income elasticity in earlier studies is from about -2 to -5, that for the Gini
elasticity is even wider. More recent studies report income elasticities closer to -2.

22Figure B-1 in Online Appendix B shows a partial regression plot highlighting the strength of the
first stage relationship.

23We recognize that inequality as recorded in the Gini may be affected by measurement error too (see
footnote 13), but we lack an adequate instrument for the Gini coefficient.
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The last row of Table 2 reports the square root of the mean squared residual

(
√
MSE). The poverty headcount is predicted with about three and a half percentage

points accuracy in the first model, and with better than two and a half percentage

points accuracy in the next two. A close fit is what one would expect from a well-

defined decomposition. A simple pseudo-R2 measure, the squared correlation between

the observed and fitted values, with values of 0.98 to 0.99, tells the same story.

We compare the results presented here with those obtained by applying the traditional

linear approaches to our data in Online Appendix B. To summarize, the traditional linear

models perform poorly and are unlikely to produce reliable estimates over a wide range

of circumstances. We also examine the evidence in favor of log-normality in our data,

and find that this hypothesis is consistently rejected.

5.2 Impacts

The strength of the fractional response approach lies in its ability to deliver precise and

unbiased estimates of effects other than the overall mean response. Table 3 and Table 4

illustrate this point by estimating income and Gini elasticities, Panel (a), and semi-

elasticities, Panel (b), over different time periods for six large geographic regions. Semi-

elasticities are computed according to eq. (15), by plugging in time-period and region-

specific averages of mean income (ln ȳit) and inequality (lnGit), and then averaging over

the entire subsample. The calculation of the elasticities is analogous, with λ(·) replacing

φ(·) in eq. (15). Standard errors are computed via a panel bootstrap to take into account

the sampling uncertainty of the first stage.

[Table 3 about here]

There is considerable regional and temporal variation in the estimated income

elasticities. As argued in Section 2, heterogeneity of elasticities is a consequence of

heterogeneity in income and inequality. More affluent regions (Eastern Europe and

Central Asia, Latin America and the Caribbean, and the Middle East and North Africa)

have higher income elasticities (in absolute value) than poorer regions (East Asia and

Pacific, South Asia, and Sub-Saharan Africa). Income dynamics over time are also clearly

visible. In Eastern Europe and Central Asia, for example, income is comparatively high

before the post-communist transition, sharply collapses through the 1990s, and recovers

during the 2000s. The income elasticity follows suit. Compared to earlier results (e.g.

Kalwij and Verschoor, 2007), we find markedly higher average income elasticities in more

affluent regions and lower elasticities in poorer regions. They are also estimated with

much greater precision. All standard errors in Table 3 are small compared to the point

estimates and remain small for regions with extreme values.

The picture is reversed when we consider the semi-elasticities in Panel (b).

Comparatively affluent regions have fewer people near the poverty line, and thus the
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poverty reduction potential from an equivalent increase in average income is much smaller

in terms of people lifted out of poverty. This pattern is (again) best visible in Eastern

Europe and Central Asia, where absolute poverty at the $2 a day poverty line is almost

non-existent just before the post-communist transition, but rises sharply in the 1990s as

incomes decline. Correspondingly, the semi-elasticity is close to zero in the 1980s but

then increases as more people fall into poverty. Likewise, the biggest poverty reduction

potential in 2005-2010 was in East Asia, South Asia, and Sub-Saharan Africa. This

highlights an important point. For development policy, we really care about the share of

the population lifted out of poverty rather than the percent change in the poverty rate.

[Table 4 about here]

Turning to the Gini elasticity, Panel (a) of Table 4 shows where the potential of

redistributive policies in terms of relative reductions of the poverty rate has been largest

in the last three decades. Unsurprisingly, these regions are Eastern Europe and Central

Asia, Latin America and the Caribbean, and the Middle East and North Africa – all of

which have above average inequality. Sub-Saharan Africa starts out with high inequality

(the population-weighted mean Gini in the 1980s is 0.46) and very low income, so that the

Gini elasticity is small. This is the downside of the dependency on initial levels: countries

can be so poor and unequal that the immediate effects of equalization and income growth

on relative changes in the poverty rate are small. Again, though, the semi-elasticities

presented in Panel (b) reverse the picture: poorer and richer countries swap positions.

The potential for absolute reductions in poverty rates through redistribution was larger

in poorer regions throughout the period.24

Two features stand out in these regional and temporal comparisons. First, there is

the contrast between the two impact measures: elasticities and semi-elasticities. The

latter have the higher policy relevance. Second, there is the sizable heterogeneity in

the estimated impacts across space and time, mainly due to their dependence on the

prevailing levels of income and inequality.25 Figure 2 illustrates this by graphing the

estimated poverty elasticities and semi-elasticities. The functions are computed from

eq. (15) and its analogue with λ(·) replacing φ(·), by plugging in various combinations of

values for per capita income (ln ȳit) and inequality (lnGit), and then averaging over the

entire sample. As Figure 2a shows, on top of the direct poverty alleviating effect of income

redistribution, a lower level of inequality also raises the income elasticity in absolute value

at every point. The magnitude of both elasticities is steeply increasing in the level of

income. The returns to either income growth or equalization are bigger, the higher the

24A dedicated section in Online Appendix B shows that all of these results also hold at the $1.25 line.
25Incomes (or expenditures) have increased substantially in all regions between 1981 and 2010 (see

Table A-3 in Online Appendix A). By contrast, inequality shows no systematic trend over the sample
period from 1981 to 2010. In a simple regression of the Gini coefficient on time, we fail to reject the null
hypothesis that the time trend is zero (cluster-robust t-stat ≈ 0.07 and p > 0.94).
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income level, and the gap between the functions evaluated at different inequality levels

keeps widening, inviting the conclusion that redistribution has most impact in affluent

societies. That, precisely, is the misleading feature of poverty elasticities.

[Figure 2 about here]

Figure 2b shows the predicted income and Gini semi -elasticities of poverty. The

picture is very different and in many ways more intuitive. If the income shortfall is too

large – the mass of the income distribution is far below the poverty line – then both the

income and the Gini semi-elasticities approach zero. If the country is affluent – the mass

of the income distribution is far above the poverty line – then both semi-elasticities again

approach zero. In between those two extremes, improvements in the income distribution

can make a large difference in the proportion of people lifted out of poverty, both directly

through redistribution and indirectly through growth (see also Bourguignon, 2003, Kalwij

and Verschoor, 2007). This pattern leads us to the conclusion that poverty reduction

strategies should focus both on income growth and on equalization, especially in low-

income countries where the total returns to redistribution are large.26

An open question is whether this decomposition can be further improved by including

additional, more ‘ultimate’ determinants of poverty, such as institutions, human capital,

access to credit, or trade openness. Weak institutions, for example, may help explain

why a disproportionate share of the gains of growth go to the rich. Under log-normality

mean income and the Gini fully describe the distribution of incomes or expenditures,

but we deliberately do not rely on log-normality and our data reject it. More realistic

distributions use additional shape parameters in order to better capture skewness, a long

tail, or multiple modes. In Online Appendix B we show that the inclusion of additional

covariates has virtually no effect on the estimated decomposition. We conclude that the

specification with only income and the Gini coefficient, plus panel size dummies and

correlated random effects, is essentially saturated.

5.3 Contributions

The contribution of growth or redistribution to changes in poverty over some predefined

period is the product of their impact (partial effect) and their actual variation, usually

expressed as a proportion of the total change in the poverty rate over the same period.

Authors performing such calculations tend to highlight the primacy of growth (see e.g.

Dollar and Kraay, 2002, Kraay, 2006, Kraay et al., 2014, Dollar et al., 2016). Kraay

(2006), for example, argues that long-run differences in poverty reduction can largely be

explained by growth in average incomes, whereas changes in inequality seem to matter

26This finding should stand with the new 2011 PPPs as well. Different PPPs would shift incomes,
the poverty line and the poverty rates, and so countries would be located differently on the graph; but
the position of the curves in terms of relative income, ȳt/z, would be comparable.
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only in the short run. Indeed, the greater importance of growth is largely due to the

stylized facts that (i) there is a lot more long-run variation in growth than in inequality,

and (ii) growth tends to be distribution-neutral.27

In spite of these facts, the poverty reducing quality of growth is of legitimate concern.

While the cross-country correlation between growth and changes in inequality is near zero

on average, it varies substantially across countries, regions, and time periods (Ravallion

and Chen, 2003). In fact, the variability of the (semi-)elasticities emphasized above,

combined with the variability of average income and inequality, can give rise to all sorts

of relative contributions in individual countries or regions at particular points in time.

This is the type of variation we are interested in.

Some additional notation will prove useful. Following Datt and Ravallion (1992), a

discrete-time, non-logarithmic version of the decomposition of poverty changes is

∆Ht ≈
[
H(ȳt/z, Lt−1)−H(ȳt−1/z, Lt−1)

]
+
[
H(ȳt−1/z, Lt)−H(ȳt−1/z, Lt−1)

]
. (16)

Here we use absolute differences, in line with our fractional response approach, for which

the level of the poverty rate is the natural metric.

The first brackets on the right-hand side contain the ‘growth component’, the second

the ‘distributional component’ of poverty reduction. We refer to them as Y and D,

respectively. Two of the four terms inside the brackets are counterfactuals: H(ȳt/z, Lt−1)

is the poverty rate if the Lorenz curve had remained unchanged while average income

evolved; H(ȳt−1/z, Lt) is the poverty rate if average income had been kept constant

while the distribution shifted. The decomposition is not exact. It is ‘path dependent’

and generates a residual.28 In the absence of micro-data it is natural to approximate

H(ȳt/z, Lt) by our earlier function H(ȳt/z,Gt), and replace the unknown quantities by

predicted counterparts Ĥ(ȳt/z,Gt−1) and Ĥ(ȳt−1/z,Gt).

We carry out this decomposition in three different data sets: one using the longest

possible spells between surveys of the same type in 1981-2010; and two for the sub-periods

1981-2000 and 2000-2010. Since the availability of surveys before 2000 is more limited,

the average spell length in the two sub-periods is comparable; both have a mean and

median duration between the initial and final surveys of about seven years. The break

point is not chosen by accident, but was picked by a formal structural change test. The

turn of the millennium marked a qualitative change in the growth performance of Sub-

Saharan Africa. For the next decade, the developing world collectively grew faster than

the developed world.29 The question is how much the poor benefited.

27Figure A-1 in Online Appendix A illustrates the latter.
28To get rid of the path dependency eq. (16) may be averaged with a second decomposition swapping

t and t − 1, delivering what Shorrocks (2013) calls the ‘Shapley decomposition’. This is not attractive
here because the decomposition residual also includes prediction errors.

29Online Appendix A discusses this in more detail, see Figure A-4 and Table A-3 in particular.
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[Table 5 about here]

Following Kraay (2006), we borrow from the growth accounting literature to define

the shares of growth and inequality (see e.g. Klenow and Rodriguez-Clare, 1997,

Caselli, 2005). Within each of our three sample periods we compute the variances of

the growth and distribution components, respectively Var(Y ) and Var(D), and their

covariance, Cov(Y,D). From these we obtain the share of the growth component as

sY = [Var(Y ) + Cov(Y,D)]/[Var(Y ) + Var(D) + 2Cov(Y,D)], and the share of the

distribution component as sD = 1 − sY .30 Table 5 reports the variance decomposition

of all spells occurring within a particular region and period using the $2 a day poverty

line. We also report the root mean squared error (
√
MSE) of the observed versus the

predicted values and the number of spells for each region and period.

For all developing countries over the entire 1981-2010 period we find that the share

of growth is about 82%, in line with the stylized facts from the literature. The

covariance between the growth and distribution components is virtually zero, consistent

with distribution-neutral growth. The residual is less than three quarters of a percentage

point, indicating that even with added model error the decomposition works well.

Breaking down these results by region delivers more interesting insights. Growth

dominated poverty reduction in Sub-Saharan Africa (where average incomes first declined,

stagnated and then recovered again), in Latin America (where inequality was persistently

high for most of the period in question), and in Europe and Central Asia (where the

post-communist transition was accompanied by rapid movements in average incomes).

Distributional change played a larger role in East Asia and Pacific, Middle East and

North Africa, and South Asia, where it accounted for about one, two and three quarters

of the poverty evolution, respectively. Some of these results come with a caveat, though.

In South Asia, even though all countries but one are represented, the sample size is very

small.31 In the Middle East and North Africa, where survey coverage is notoriously bad,

the residual is more than twice the average in size.

A new fact emerges once we split the sample at the turn of the millennium. Table 5

shows that, while growth was responsible for nearly all of the changes in the poverty

rate before 2000, its share fell to 72% in the following decade. Since the mean spell

lengths are about the same, this is not due to a long run vs. short run difference.

Instead, this evolution seems to be the result of a shift in the poverty reducing quality

of growth. Panel (b) shows that before 2000 the correlation between the growth and

distribution component was negative for all developing countries as a whole and for half

of the regions. Panel (c) demonstrates that after 2000 the correlation between the two

30One share can exceed 1, but the two shares always add up to 1. Caselli (2005) discusses a set of
alternative measures, but they do not change the qualitative implications of our results.

31The large share of the distribution component is driven by the Maldives and Bhutan, where nearly
all or about half of poverty reduction can be attributed to changes in distribution.
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components turned positive for the sample as a whole and in all regions except East Asia.

Online Appendix C confirms that this pattern also holds at the $1.25 a day poverty line.

[Figure 3 about here]

Figure 3 helps to make this point more tangible. The upper panel shows how the

correlation between the estimated growth and distribution components changed over the

turn of the millennium. Before 2000, reductions in poverty through growth often coincided

with adverse distributional change (lower right quadrant), and negative economic growth

often coincided with pro-poor distributional change (upper left quadrant), seemingly

reflecting an Okunian trade-off. Since 2000, this is no longer true. In a majority of cases,

poverty reduction through growth was reinforced by pro-poor distributional change (lower

left quadrant). In other cases, growth was not accompanied by pro-poor redistribution

(lower right quadrant). Only in a handful of cases did growth fail to reduce poverty

(both upper quadrants). The lower panel of the figure shows that the estimated growth

components closely track the observed change in the poverty rate in both subsamples,

whether the change is positive or negative. We observe that, after 2000, growth becomes

a net contributor to poverty reduction almost everywhere.

Taken together, these results challenge both Okun’s ‘big trade-off’ and the view that

growth is distribution-neutral. The evidence suggests that in developing countries growth

can be, and has in fact become, more pro-poor since the turn of the millennium. It has

done so both in the relative sense of benefiting the poor disproportionately, and in the

absolute sense of reducing poverty rates. Whether this trend can be maintained is of

formidable importance for the goal of ending absolute poverty over the coming decades.

5.4 Projections

In 2015, all member states of the United Nations agreed to ‘eradicate extreme poverty for

all people everywhere, currently measured as people living on less than $1.25 a day’ by

2030. The key question we ask in this subsection is whether this new goal is attainable,

or whether the global goalpost has been set so high that it may fail to promote a sensible

allocation of development assistance.

The official World Bank regional poverty figures involve a considerable amount of

interpolation and extrapolation, as most household surveys are carried out infrequently

(for details see Chen and Ravallion, 2004). Our method is similar in spirit. It involves

four steps. First, we extrapolate the last available survey income to 2010 using actually

observed country growth rates in personal consumption expenditures per capita (PCEit)

from the national accounts.32 Second, we project mean income into the future, using one

32The term ‘national accounts’ refers to data from the World Development Indicators or the Penn
World Table 7.1, whichever has more data over the 30 year horizon.
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of three constant-growth scenarios and one of three distributional scenarios. Third, we

predict each country’s poverty rate over the period from 2010 to 2030 using the estimates

from column (2) in Table 2.33 We may neglect measurement errors in income or inequality

for forecasting purposes, implicitly assuming that their influence remains stable over time.

Fourth, we calculate regional and global aggregates as population-weighted averages of

the country estimates using World Bank population projections.

We base our constant-growth scenarios on the historical PCEit growth rates in three

predefined periods.34 An ‘optimistic’ scenario uses the average PCEit growth rate of

each country over 2000-2010, a decade characterized by fast growth. A ‘moderate’ growth

scenario uses the average PCEit growth rate of each country over 1980-2010, the long-run

average over the entire sample period. Finally, a ‘pessimistic’ growth scenario uses the

1980-2000 growth rates, a period during which mean consumption in Sub-Saharan Africa

shrank at a rate of about 0.82% per year.

For each growth scenario, we simulate three inequality patterns. The ‘distribution-

neutral’ scenario keeps inequality constant at its 2010 level, in line with the zero

correlation between inequality changes and income growth observed over the entire period.

In the ‘pro-poor’ scenarios the Gini coefficient declines, and in the ‘pro-rich’ scenarios it

increases, by half a percent annually. Consider the following example for illustration. If a

country’s Gini coefficient is 0.40 in 2010 and growth is pro-poor, then by 2030 we project

a Gini coefficient of about 0.36; but if growth is pro-rich, then the Gini coefficient rises to

about 0.44 in 2030. Changes of this magnitude are in line with the population-weighted

regional trends obtained from the surveys.

Our in-sample estimates for 2010 compare well with the ‘official’ World Bank figures.

We can almost perfectly match the World Bank’s results for the developing world total.

We estimate a poverty rate of 40.37% in 2010 at the $2 a day poverty line, whereas the

World Bank reports 40.67%.35 Using the same population data, our estimates imply

about 2.378 billion people under the $2 line versus 2.395 billion as reported by the World

Bank. For three regions, our estimates are within one percentage point of the official

figures; for the other three, they are within 3 percentage points.36 In Online Appendix B

we also discuss the results of two cross-validation exercises.37 Our model very accurately

forecasts regional or developing world aggregates and still has a decent out-of-sample

33Although the estimation only uses the sub-sample with Ti ≥ 2, we can use the estimates to predict
poverty for the entire sample (Ti ≥ 1). We only lack estimates of the panel size effects for Ti = 1, so we
assign these observations to the adjacent group (Ti = 2).

34Table A-3 in Online Appendix A reports population-weighted regional growth rates over these
periods to illustrate the implied regional income dynamics.

35This was the official number until the Oct. 9, 2014 update of PovcalNet.
36For Sub-Saharan Africa, for instance, we estimate a poverty rate of 69.36% and the World Bank

reports 69.87%. For East Asia, we estimate 26.78%, whereas the World Bank figure is 29.73%.
37We are indebted to an anonymous referee for suggesting this to us. Table B-4 in Online Appendix B

uses the data before 2005 to predict regional poverty rates in the 2005–2010 period. Table B-5 conducts
a 10-fold cross-validation where 10% of the time periods are deleted in each fold.
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performance when it comes to individual observations.

[Table 6 about here]

Table 6 shows our projections for 2030 under the $2 poverty line. Our moderate

growth scenario predicts that in 2030 about 1.87 billion people (26%) will live on less

than $2 a day, as compared to 2.4 billion (40.37%) in 2010. However, much greater

gains are possible. Global poverty under the $2 line falls by half to less than 20% of the

developing world’s population in the optimistic growth scenario with distribution-neutral

or pro-poor growth. If this happens by 2030, then more than one billion people will have

left poverty at the $2 line – undeniably a remarkable achievement.

Examining the regional distribution, we find that $2 poverty in East Asia is likely to

fall to around 5% by 2030, down from 29.7% in 2010. Nearly everyone in East Asia will

have entered the middle class by developing-country standards. Progress in South Asia is

also likely to be rapid. According to our moderate growth estimate the expected poverty

rate is 35.9% in 2030, meaning about 716 million poor, down from 66.7% or 1.1 billion

poor in 2010. In the optimistic pro-poor growth case, the headcount ratio falls further to

less than 20% and the number of poor to less than 400 million. In stark contrast, the $2

a day poverty rate in Sub-Saharan Africa is expected to remain very high. Our moderate

growth scenario predicts a poverty rate of about 66%, down from 69.9% in 2010, which

at current population projections implies almost one billion poor in Sub-Saharan Africa

alone. Even in the optimistic and pro-poor growth scenario, we project a poverty rate

of over 50% and more than 700 million poor. The bulk of the consumption distribution

is too far below the $2 a day poverty line in 2010 for most of the subcontinent. Hence,

poverty alleviation in Sub-Saharan Africa remains the primary development challenge of

the first half of the 21st century.

These observations can in part be explained by a process of ‘bunching up above $1.25

a day and just below $2 a day’ occurring in East Asia and, to a lesser extent, in South

Asia over the last two decades (Chen and Ravallion, 2010). These two regions have a

relatively large population near the poverty line and hence most of the advances are

projected to occur there. Latin America and the Caribbean, as well as the Middle East

and North Africa, are richer and require stronger income growth to continuously reduce

poverty. Sub-Saharan Africa, on the other hand, has a large proportion of poor far below

the $2 a day line in 2010 (and almost 50% below $1.25 a day). It is facing a lower income

elasticity and an income semi-elasticity that is below its peak. Hence, the subcontinent

needs exceptionally strong income growth to make significant strides against poverty.

In Online Appendix B we repeat this analysis for the $1.25 a day poverty line. The

key difference is that the pace of poverty reduction will have slowed considerably by 2030,

both in terms of relative changes and in terms of numbers of poor people. Even under

optimistic, distribution-neutral growth, we find a global poverty rate of 9.11% in 2030,
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with about 655 million people remaining extremely poor. Around 70% of the world’s

poor will live in Sub-Saharan Africa. There is a straightforward implication for the post-

2015 development agenda: 2030 is unlikely to mark the end of extreme poverty, even

under very optimistic assumptions. Figure 4 illustrates this result. It plots the historical

evolution of world poverty from 1981 to 2010, a trend fitted through the observed data

and extrapolated until 2030, and our different scenarios. The linear trend serves as a

reference for the non-linear projections.

[Figure 4 about here]

Several points are worth noting. First, only the linear extrapolation which disregards

the changing semi-elasticities predicts an extreme poverty rate in the vicinity of zero by

2030. Second, at the $1.25 a day line, all projections show a decelerating trend in poverty

reduction, although in the optimistic scenarios the slowdown becomes noticeable later.

Third, most scenarios suggest a $1.25 poverty rate higher than 10% in 2030; the optimistic

pro-poor and distribution-neutral scenarios project 7.9% and 9.1%, respectively. Fourth,

most scenarios also exhibit a decelerating pace of poverty reduction at the $2 a day line,

but the slowdown tends to occur relatively late.

The changing composition of global poverty has profound implications for the medium-

term future. Going forward, fast growing East Asia will contribute less and less to global

poverty reduction, especially at the $1.25 a day line, while the share of the global poor

residing in Sub-Saharan Africa and South Asia will continue to rise. None of our nine

scenarios predict an extreme poverty rate near zero by 2030. This stands in stark contrast

to earlier studies and the ‘3% by 2030’ target of the World Bank which became enshrined

in the Sustainable Development Goals of the UN. Such an outcome would require an

implausible acceleration of growth in many of the poorest countries in the world, coupled

with a deceleration of population growth. Even if growth rates in Sub-Saharan Africa

were to double relative to the post-2000 trend, given persistent population growth, the

global extreme poverty rate would still be well above 3% in 2030.

Two caveats are in order when it comes to comparing our estimates to recent figures

from the World Bank. First, the World Bank switched from reporting global poverty

in percent of the developing world population to percent of the global population.

This lowered their estimates by a few percentage points and made the goal seem more

attainable. Second, our results should not be very sensitive to the new 2011 PPPs,

provided we shift the international poverty lines accordingly to $1.90 and $3.10 a day.

The new poverty lines were re-drawn with the explicit aim of keeping the global yardstick

constant (see Ferreira et al., 2015). The 2011 PPPs suggest that the poorest regions are

a little less poor and middle-income regions a little poorer, but the global poverty rate in

2010 only changed by about one tenth of a percentage point. This is trivial in comparison

with the fundamental uncertainties involved in estimating such a global number.
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6 Concluding remarks

The main purpose of this paper is to provide an assessment of the potential impacts

and historical contributions of growth and redistribution to poverty reduction which

reflects the heterogeneity of initial conditions in the developing world. To this end, we

develop a new empirical framework for poverty accounting. Our approach has several

advantages over the linear models with interactions typically employed in the literature.

Above all, it accommodates the fact that the poverty headcount ratio is a fraction, and

it closely approximates the shape of the Lorenz curve near the poverty line using only

two summary statistics: mean income and the Gini coefficient. It is also general enough

to be applicable in other contexts than global poverty. It could, for instance, be used to

decompose national poverty rates across geographical areas or population groups.

We use this new framework together with a large data set of aggregated household

surveys to show that differences in initial income and inequality across countries

induce strong regional heterogeneity in the estimated poverty responses. Unlike linear

approaches, our model precisely estimates the non-linear semi-elasticities and elasticities

of poverty across the entire range of the data, thus allowing policy makers to understand

their individual circumstances. We emphasize that the semi-elasticities are the policy

relevant parameters, assuming that policy makers care about differences in the share of

the population that is poor, rather than relative changes in the poor population.

We find that the relative importance of growth and inequality has changed since the

turn of the millennium. Growth has become more pro-poor, not only in the sense that

it actually reduces poverty, but also in the sense that it is often accompanied by lower

inequality. As a result, inequality has begun to play a greater role. The share of poverty

reduction due to changes in distribution increased from less than 10% before 2000 to

about a third thereafter. To better understand the implications of this development, we

project global and regional poverty rates from 2010 until 2030 using a variety of scenarios.

A billion people may be lifted out of $2 a day poverty by 2030, but progress at the $1.25

a day line is bound to slow down. Simultaneously, the global geography of poverty is

shifting. There are two major consequences. First, the goal of ending extreme poverty

within a generation will not be achieved. Second, global poverty will be concentrated in

Sub-Saharan Africa, especially in states that are currently fragile and conflict-ridden.

Finally, while pro-poor redistribution diminishes poverty by definition, it can also

make economic growth much more effective at reducing poverty. We argue that this

interaction between inequality and growth is of great importance and reverses some long-

held views, as far as the developing world is concerned. At the same time, it should be

remembered that the scope of poverty accounting is limited to the proximate determinants

of poverty. It does not identify the ultimate causes of poverty, or how growth and

inequality are causally related, but focuses on the last link in a long chain of events.
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Tables and Figures

Table 1 – Summary statistics

Mean Std. Deviation Min Max N
Main variables (2005 PPP $)
Hit – Headcount ($2) 0.303 0.286 .0002 .9845 809
Hit – Headcount ($1.25) 0.182 0.219 .0002 .9255 789
Git – Gini coefficient 0.424 0.102 .2096 .7433 809
ȳit – Mean income or expenditure in $ per month 194.59 125.90 14.93 766.78 809
PCEPit – Consumption (PWT) in $ per month 338.64 234.59 14.39 1231.21 795
Survey type dummies
Consumption expenditures, grouped 0.611 0.488 0 1 809
Consumption expenditures, household 0.015 0.121 0 1 809
Income, grouped 0.132 0.339 0 1 809
Income, household 0.242 0.429 0 1 809

Notes: The table reports summary statistics. All aggregate survey data originate from the World
Bank’s PovcalNet database. National accounts consumption has been calculated based on the Penn
World Table 7.1.
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Table 2 – Fractional probit models (QML) – Dependent variable: Hit, $2 a day

(1) (2) (3)
Regular CRE Unbalanced Unbalanced + Two-Step
Hit APEs Hit APEs Hit APEs

ln ȳit -1.263 -0.284 -0.880 -0.281 -1.086 -0.338
(0.054) (0.012) (0.048) (0.011) (0.190) (0.035)

lnGit 1.032 0.232 0.786 0.251 0.824 0.256
(0.114) (0.026) (0.098) (0.026) (0.160) (0.030)

ν̂it 0.200
(0.112)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance function No Yes Yes

Scale factor 0.225 0.319 0.311
N × T̄ 789 789 775
N 104 104 103
pseudo R2 0.984 0.993 0.994
lnL -219.3 -315.6 -313.2√
MSE 0.0355 0.0238 0.0223

Notes: The table reports fractional response QML estimates. The dependent variable is the poverty
rate at $2 a day (in 2005 PPPs). 20 observations with Ti = 1 are not used in estimation. The
panel structure is country-survey-year. In models (1) and (2), the standard errors of the coefficients
are robust to clustering at the country level and the standard errors of the APEs are computed
via the delta method. We include the time averages of the survey type and time dummies in (2)
and (3), but constrain their coefficients to be equal across the panel sizes. The standard errors of
the coefficients and the APEs in model (3) account for the first stage estimation step with a panel
bootstrap using 999 bootstrap replications. The linear projection in the first stage uses lnPCEPit
as an instrument for ln ȳit. The first-stage cluster-robust F-statistic for instrument relevance in (3)
is 28.05. The estimation of model (3) excludes West Bank and Gaza entirely (2 observations) and
12 observations from ECA countries pre-1990 for lack of PCE data.
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Table 3 – Income elasticities and semi-elasticities, $2 a day, by region

Time period

1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

Panel (a) Regional income elasticities

East Asia and Pacific -0.975 -1.012 -1.217 -1.120 -1.556
(0.031) (0.033) (0.054) (0.042) (0.101)

Eastern Europe and Central Asia -4.346 -2.872 -2.681 -2.824 -3.282
(0.575) (0.318) (0.284) (0.312) (0.396)

Latin America and Caribbean -2.249 -2.339 -2.388 -2.312 -2.947
(0.247) (0.261) (0.276) (0.263) (0.376)

Middle East and North Africa -2.149 -2.091 -2.002 -1.943 -2.480
(0.206) (0.191) (0.170) (0.163) (0.252)

South Asia -0.541 -0.621 -0.796 -1.008 -1.177
(0.055) (0.050) (0.032) (0.032) (0.046)

Sub-Saharan Africa -0.815 -0.423 -0.424 -0.577 -0.616
(0.029) (0.041) (0.042) (0.036) (0.035)

Panel (b) Regional income semi-elasticities

East Asia and Pacific -0.565 -0.571 -0.586 -0.582 -0.556
(0.033) (0.036) (0.046) (0.042) (0.051)

Eastern Europe and Central Asia -0.032 -0.218 -0.265 -0.229 -0.137
(0.008) (0.015) (0.020) (0.015) (0.010)

Latin America and Caribbean -0.384 -0.358 -0.344 -0.366 -0.202
(0.027) (0.024) (0.023) (0.025) (0.013)

Middle East and North Africa -0.412 -0.429 -0.453 -0.469 -0.318
(0.034) (0.037) (0.042) (0.043) (0.025)

South Asia -0.415 -0.454 -0.522 -0.570 -0.585
(0.022) (0.018) (0.022) (0.035) (0.044)

Sub-Saharan Africa -0.528 -0.346 -0.346 -0.433 -0.452
(0.023) (0.020) (0.020) (0.015) (0.015)

Notes: The table reports regional income elasticities in panel (a) and semi-elasticities in panel (b).
The estimates are computed by plugging period and region-specific averages of mean income and
inequality into eq. (15) or its semi-elasticity counterpart, and then averaging over the entire sample.
Standard errors are obtained via a panel bootstrap using 999 replications.
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Table 4 – Inequality elasticities and semi-elasticities, $2 a day, by region

Time period

1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

Panel (a) Regional inequality elasticities

East Asia and Pacific 0.740 0.768 0.924 0.850 1.181
(0.100) (0.097) (0.108) (0.103) (0.138)

Eastern Europe and Central Asia 3.298 2.180 2.034 2.143 2.491
(0.505) (0.301) (0.277) (0.291) (0.348)

Latin America and Caribbean 1.707 1.775 1.812 1.755 2.236
(0.182) (0.194) (0.196) (0.186) (0.266)

Middle East and North Africa 1.631 1.587 1.520 1.475 1.882
(0.192) (0.192) (0.190) (0.179) (0.247)

South Asia 0.411 0.471 0.604 0.765 0.893
(0.089) (0.092) (0.090) (0.102) (0.121)

Sub-Saharan Africa 0.618 0.321 0.322 0.438 0.468
(0.083) (0.054) (0.058) (0.064) (0.066)

Panel (b) Regional inequality semi-elasticities

East Asia and Pacific 0.429 0.433 0.444 0.442 0.422
(0.051) (0.051) (0.052) (0.051) (0.050)

Eastern Europe and Central Asia 0.024 0.166 0.201 0.174 0.104
(0.007) (0.015) (0.018) (0.017) (0.013)

Latin America and Caribbean 0.291 0.272 0.261 0.277 0.153
(0.044) (0.041) (0.042) (0.044) (0.029)

Middle East and North Africa 0.313 0.325 0.344 0.356 0.242
(0.039) (0.038) (0.039) (0.041) (0.024)

South Asia 0.315 0.345 0.396 0.433 0.444
(0.056) (0.055) (0.050) (0.051) (0.052)

Sub-Saharan Africa 0.400 0.262 0.263 0.328 0.343
(0.048) (0.038) (0.041) (0.042) (0.042)

Notes: The table reports regional inequality elasticities in panel (a) and semi-elasticities in panel
(b). The estimates are computed by plugging period and region-specific averages of mean income
and inequality into eq. (15) or its semi-elasticity counterpart, and then averaging over the entire
sample. Standard errors are obtained via a panel bootstrap using 999 replications.
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Table 5 – Decomposition at $2 a day poverty line, by region

Var(Y ) Var(D) Cov(Y,D) sY sD
√
MSE N

Panel (a) Spells from 1981 to 2010

East Asia and Pacific 1.166 0.385 0.001 75.16 24.84 1.01 12
Europe and Central Asia 3.429 0.414 0.164 86.14 13.86 0.57 39
Latin America and Caribbean 3.073 0.666 -0.619 98.12 1.88 0.79 28
Middle East and North Africa 0.425 0.452 0.304 49.10 50.90 1.38 8
South Asia 0.659 2.743 0.191 22.46 77.54 0.36 7
Sub-Saharan Africa 1.482 0.134 -0.196 105.08 -5.08 0.48 29

All developing 2.576 0.579 0.002 81.61 18.39 0.73 123

Panel (b) Spells from 1981 to 1999

East Asia and Pacific 0.951 0.151 0.017 85.23 14.77 0.86 9
Europe and Central Asia 14.568 1.912 -0.706 91.99 8.01 0.92 25
Latin America and Caribbean 3.750 1.229 -0.633 83.94 16.06 0.89 26
Middle East and North Africa 0.372 0.365 0.207 50.31 49.69 0.78 6
South Asia 0.244 0.021 0.004 91.11 8.89 0.33 4
Sub-Saharan Africa 2.217 0.702 -0.309 82.89 17.11 0.92 17

All developing 6.852 1.073 -0.368 90.19 9.81 0.87 87

Panel (c) Spells from 2000 to 2010

East Asia and Pacific 1.579 1.143 -0.134 58.89 41.11 1.18 10
Europe and Central Asia 3.544 0.498 0.826 76.75 23.25 0.57 26
Latin America and Caribbean 0.365 0.150 0.010 70.10 29.90 0.35 19
Middle East and North Africa 0.780 0.741 0.629 50.69 49.31 1.76 5
South Asia 0.642 1.122 0.731 42.57 57.43 0.40 6
Sub-Saharan Africa 2.051 0.560 0.188 74.97 25.03 0.87 21

All developing 2.049 0.559 0.365 72.31 27.69 0.81 87

Notes: The table reports the results of the decomposition of the observed changes in the poverty rate
at $2 a day into its growth and distribution components at the regional level. The estimates are based
on column (3) of Table 2. Panels (a) to (c) run this decomposition over the three different periods
specified. We predict the counterfactual quantities using the first and last available observations
from the longest run of surveys of the same type within the specified period.
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Figure 1 – Transformed headcount ($2 a day) and log-mean income, by region
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Notes: Illustration of how effectively the inverse normal cdf linearizes the conditional mean. The
figure plots Φ−1(Hit) against ln ȳit per region, including a regression line.
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Figure 2 – Predicted income and Gini elasticities and semi-elasticities of poverty, $2 a day

(a) elasticities (ε̂Hȳ and ε̂HG)
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(b) semi-elasticities (η̂Hȳ and η̂HG)
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Notes: Illustration of the non-linear nature of the poverty-growth-inequality relationship based on
the estimates presented in column (3) of Table 2. Panel (a) shows the estimated income elasticities
of poverty (on the left) and estimated inequality elasticities of poverty (on the right) plotted over the
ratio of average income to the poverty line. Panel (b) shows the estimated income semi-elasticities
of poverty (on the left) and estimated inequality semi-elasticities of poverty (on the right) plotted
over the ratio of average income to the poverty line. The various curves correspond to estimates
based on different Gini coefficients.
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Figure 3 – Estimated components from poverty accounting, $2 a day

(a) Growth versus distribution component, pre and post 2000
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(b) Observed change versus growth component, pre and post 2000
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Notes: Illustration of the results from the poverty decomposition. Panel (a) plots the growth
component against the distribution component for the pre-2000 sample (on the left) and for the post-
2000 sample (on the right). Panel (b) plots the change in the poverty rate against the distribution
component for the pre-2000 sample (on the left) and for the post-2000 sample (on the right). The
number of dots in a graph may exceed the number of countries, since some countries have both a
consumption and an income survey spell.
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Figure 4 – Global poverty: observed data, trends and projections, $1.25 and $2 a day
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Notes: Illustration of the projections. The left panel shows the projections at the $1.25 a day poverty
line; the right panel shows the projections at $2 a day poverty line. The dashed line is a linear trend
based on the data until 2010. The black line after 2010 displays the moderate growth scenario,
the two gray lines above and below stand for the pessimistic and optimistic growth scenarios with
distribution-neutral growth, respectively. Small dashed curves above and below each growth scenario
are the associated pro-rich and pro-poor scenarios.
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A Additional summary statistics

A.1 Household surveys in the sample

Our sample is severely unbalanced and mixes different types of survey aggregates. Poverty

and inequality were estimated by PovcalNet either on data that have been pre-aggregated

into groups by the national statistical offices, or directly on the basis of the underlying

household surveys.

Table A-1 reports the survey type by geographic region and illustrates the temporal

coverage. ‘I’ and ‘C’ denote grouped income or consumption data, whereas ‘i’ and ‘c’

denote unit level income or consumption data. Note that Latin America is the only region

which predominantly relies on income surveys. Table A-2 shows additional summary

statistics by region.

The other figures complement statements made in the main text. Figure A-1

illustrates the lack of a raw correlation between changes in distribution and income growth

in the sample as a whole. Figure A-2 shows that the inverse normal cdf also linearizes

the relationship between the observed poverty rate and the log of the Gini coefficient.

Note that this is the simple bivariate relationship without partialling out the influence

of other variables, such as log income. Figure A-3 adds the regional trends in the raw

poverty rates over time.

Table A-1 – Survey coverage and types, 1981 – 2010

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

Panel (a) East Asia and Pacific

CHN I I I C C C C C C C C C C C C C

FJI C C

IDN C C C C C C C C C C C C C

KHM C C C C C

LAO C C C C

MYS I I I I I I I I I

PHL C C C C C C C C C

PNG C

THA C C c c c c c c c c c c c

TMP C C

VNM C C C C C C

Panel (b) Eastern Europe and Central Asia

ALB C C C C C

ARM I C C C C C C C C C C

AZE C C C

BGR C C I C C C C

BIH C C C

BLR I I I I C C C C C C C C C C

Continued on next page
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Table A-1 – Continued from previous page

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

CZE I I

EST I I C C C C C C C

GEO C C C C C C C C C C C C C C

HRV I C C C C C C

HUN I I I C C C C C C C

KAZ I I C C C C C C C C C

KGZ C C C C C C C C C C

LTU I I C C C C C C C

LVA I I I I I C C C C C C

MDA I I C C C C C C C C C C C C C

MKD C C C C C C C C C C

MNE C C C C

POL I I I C I C C C C C C C C C C C C C

ROM I I I C C C C C C C C C C C

RUS I C C C C C C C C C C C C

SRB C C C C C C C C C

SVK I C C C C C C

SVN I I C C C C

TJK C C C C C

TKM I I C

TUR C C C C C C C C C C C

UKR I C C I C C C C C C C C C

Panel (c) Latin America and the Caribbean

ARG I I I I I I I I I I I I I I I I I I I I I

BLZ i i C i i i i

BOL I I I I I I I I I I I

BRA i i i i i i i i i i i i i i i i i i i i i i i i i i

CHL i i i i i i i i i i

COL i i i i i i i i i i i i i i

CRI I I i i i i i i i i i i i i i i i i i i i i i

DOM I I I i i i i i i i i i i i i i

ECU I i i i i i i i i i i i

GTM I I I i i i i i

GUY I I

HND I I i i i i i i i i i i i i i i i i i i

HTI i

JAM C C C C C C C

LCA I

MEX C C C C C C C C C C C

NIC C C C C

PAN i i i i c i i i i i i i i

PER C C i i i i i i i i i i i i i i

PRY i i i i i i i i i i i i i i

Continued on next page
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Table A-1 – Continued from previous page

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

SLV i i i i i i i i i i i i i i

SUR I

TTO I I

URY I i i i i i i

VEN I I i i i i i i i i i i i

Panel (d) Middle East and North Africa

DJI C

DZA C C

EGY C C C C C

IRN C C C C C

IRQ C

JOR C C C C C C C

MAR C C C C C

SYR C

TUN C C C C C C

WBG C C

YEM C C

Panel (e) South Asia

BGD C C C C C C C C

BTN C C

IND C C C C C

LKA C C C C C C

MDV C C

NPL I C C C

PAK C C C C C C C C

Panel (f) Sub-Saharan Africa

AGO C C

BDI C C C

BEN C

BFA C C C C

BWA C C

CAF C C C

CIV C C C C C C C C C

CMR C C C

COG C

COM C

CPV C

ETH C C C C

GAB C

GHA C C C C C

GIN C C C C

GMB C C

GNB C C

Continued on next page
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Table A-1 – Continued from previous page

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

KEN C C C C

LBR C

LSO C C C C

MDG C C C C C C

MLI C C C C

MOZ C C C

MRT C C C C C C

MWI C C C

NAM I I

NER C C C C

NGA C C C C C

RWA C C C

SDN C

SEN C C C C

SLE C

STP C

SWZ C C C

SYC C

TCD C

TGO C

TZA C C C

UGA C C C C C C C

ZAF C C C C C

ZAR C

ZMB C C C C C C C

Notes: The table reports the temporal and regional coverage of the survey data, as well as the type
of survey conducted in each year. ‘I’ and ‘C’ denote grouped income or consumption data, whereas
‘i’ and ‘c’ denote unit level income or consumption data.
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Table A-2 – Summary statistics by region (unweighted)

Variable Mean Standard Deviation Min Max
East Asia and Pacific (N=80)

Hit – Headcount ($2) 0.502 0.267 0.023 0.978
Git – Gini coefficient 0.392 0.058 0.275 0.509
ȳit – Mean income or expenditure 107.86 78.39 25.02 399.76

Eastern Europe and Central Asia (N=254)
Hit – Headcount ($2) 0.110 0.169 0.000 0.857
Git – Gini coefficient 0.330 0.056 0.210 0.537
ȳit – Mean income or expenditure 251.99 136.11 37.66 766.78

Latin America and Caribbean (N=274)
Hit – Headcount ($2) 0.204 0.122 0.002 0.775
Git – Gini coefficient 0.523 0.054 0.344 0.633
ȳit – Mean income or expenditure 246.63 90.55 55.53 671.04

Middle East and North Africa (N=37)
Hit – Headcount ($2) 0.166 0.111 0.003 0.466
Git – Gini coefficient 0.380 0.042 0.301 0.474
ȳit – Mean income or expenditure 165.26 56.59 84.02 306.33

South Asia (N=35)
Hit – Headcount ($2) 0.672 0.226 0.122 0.936
Git – Gini coefficient 0.343 0.067 0.259 0.627
ȳit – Mean income or expenditure 67.78 39.20 30.71 204.98

Sub-Saharan Africa (N=129)
Hit – Headcount ($2) 0.708 0.202 0.018 0.985
Git – Gini coefficient 0.453 0.087 0.289 0.743
ȳit – Mean income or expenditure 67.62 54.04 14.93 465.80

Notes: The table reports regional summary statistics. Mean income or expenditure is reported in
2005 PPP international dollars per month. 809 observations, 124 countries in total, unbalanced
sample from 1981 to 2010.
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Figure A-1 – Inequality changes and income growth, 1981–2010

-0.1

0.0

0.1

-0.25 0.00 0.25 0.50
Annualized Change in Log Mean Income (∆ ln ȳit)
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Notes: Illustration of the weak correlation between annualized changes in average income and
annualized changes in inequality, as measured by proportionate changes in the Gini coefficient.
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Figure A-2 – Transformed headcount ratios ($2 a day) and log Gini, by region
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Notes: Illustration of how effectively the inverse normal cdf linearizes the conditional mean. The
figure plots Φ−1(Hit) against ln Ḡit per region, including a regression line.

viii



Figure A-3 – Time trends in headcount ratios ($2 a day), by region
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Notes: Illustration of the regional diversity in poverty levels and trends. The figure plots Hit against
the (rounded) survey year per region, including a regression line.
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A.2 Growth in personal consumption expenditures

Consumption expenditures from the national accounts (PCE) play an important role in

the paper. They form the basis of the identification strategy and are used as inputs in the

forecasting model. Here we highlight two major points: (i) the long-run trend of PCE

growth in Sub-Saharan Africa has shifted upward in the mid-1990s and again in 2000;

(ii) PCE growth has been very unsteady in the past, not only in Sub-Saharan Africa but

also in all other regions apart from East Asia.

Figure A-4 illustrates the first point. It plots two series: PCE growth in the developing

world without Sub-Saharan Africa, and PCE growth in Sub-Saharan Africa. The series

are 10-year simple moving averages in order to smooth out cyclical variation and isolate

the long-run trend. We use a formal structural change test (Andrews, 1993) to detect

an unknown break point in the Sub-Saharan African trend. The test identifies the year

2000, with an associated sup-F statistic of 97.43 and an approximate p-value < 0.001.

We also ran population-weighted regressions with PCE growth in all Sub-Saharan African

countries as the dependent variable and a dummy variable marking all observations after

1999, plus a constant, on the right hand side. The raw data also indicates a break around

the millennium. PCE growth before 2000 is estimated to be -0.82% per annum. After

2000, growth increases to 2.4% per annum – a sizable up-break of about 3.2%.

Table A-3 analyzes this temporal and regional instability of PCE growth rates in

greater detail. It reports regional PCE growth rates over various time periods which are

the backbone of our poverty projections. It is readily apparent why the period from 2000

to 2010 corresponds to our ‘optimistic’ growth scenario, 1980 to 2010 to our ‘moderate’

growth scenario, and 1980 to 2000 to our ‘pessimistic’ growth scenario. Only East Asia

experiences relatively stable consumption growth throughout all sub-periods. Several

other regions were plagued by slow or negative growth in the 1980s and 1990s. However,

most regions exhibit at least a moderate acceleration of PCE growth in the period from

2000 to 2010 (as highlighted in Figure A-4).
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Figure A-4 – Long-run trends in PCE growth – SSA versus developing world, 1985–2010
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Notes: The figure plots the long-run trend in per capita consumption expenditure growth in Sub-
Saharan Africa (SSA) and the developing world without SSA. The time series have been smoothed
using 10-year simple moving averages (SMA). The dotted vertical line marks the year 2000 where
the long run trend in SSA experienced a structural break, as indicated by a formal structural change
test (Andrews, 1993).
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Table A-3 – Growth in personal consumption expenditures per capita (in %), by region

Time Period

2000-2010 1990-2010 1980-2010 1990-2000 1980-2000

East Asia and Pacific 5.906 5.772 5.598 5.608 5.377
(0.813) (0.653) (0.725) (0.508) (0.677)

Europe and Central Asia 6.085 2.755 2.558 -1.225 -0.769
(0.989) (0.412) (0.411) (1.027) (0.916)

Latin America and the Caribbean 2.444 2.219 1.445 1.931 0.677
(0.239) (0.140) (0.098) (0.337) (0.171)

Middle East and North Africa 3.495 2.532 1.851 1.253 0.495
(0.443) (0.440) (0.293) (0.648) (0.545)

South Asia 4.448 3.612 3.179 2.511 2.173
(0.489) (0.388) (0.351) (0.294) (0.284)

Sub-Saharan Africa 2.382 1.419 0.698 0.016 -0.818
(0.689) (0.470) (0.472) (0.688) (0.540)

N 123 123 123 122 122
T̄ 10.99 20.64 27.16 9.730 16.30
N × T̄ 1352 2539 3341 1187 1989

Notes: The table reports population-weighted estimates of regional PCE growth. Cluster robust
standard errors are reported in parentheses.
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B Additional regression results

B.1 Strength of the first stage and fit of the second stage

In the estimation of eq. (14) in the main text we use personal consumption expenditures

from the national accounts as a time-varying instrument for the observed survey means.

The first-stage relationship is very strong. The Kleibergen-Paap F -statistic is 28.05 when

we carry out a small sample adjustment and 31.39 without. This far exceeds even the

strictest critical values for one endogenous regressor given in Stock and Yogo (2005).

Figure B-1 illustrates the strength of the first-stage relationship visually. It shows

a partial regression plot of the variation in log income that is captured by personal

consumption expenditures, after removing the influence of all other variables including

the fixed effects. Estimates of l̃n ȳit = ln ȳit − x′1itπ1 −
∑T

`=2 δTi,`(π0` + x̄′iπ3` + z̄′iπ4`) are

plotted on the y-axis, and estimates of ˜lnPCEP
it = lnPCEP

it − x′1itπ1 −
∑T

`=2 δTi,`(π0` +

x̄′iπ3` + z̄′iπ4`) on the x-axis. As in the main text, x1it excludes ln ȳit but includes the log

of Gini, while x̄i and z̄i contain the time averages of lnGit and lnPCEP
it , respectively.

Figure B-2 shows that our fractional response framework fully captures the inherent

non-linearity of the poverty data in the second estimation stage. Using our preferred

specification, we plot both the observed headcount and the predicted headcount over the

range of observed mean income or expenditures (left panel) and inequality (right panel).

The non-linear fit is very close at either bound (near unity or near zero). The model

predicts no nonsensical values, and the entire range of variation of the observed values is

covered by the model predictions.
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Figure B-1 – Partial regression plot – first stage
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Notes: The figure plots two residual series, so that the plotted slope is identical to the slope of
lnPCEPit in the first stage of the results presented in Table 2.
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Figure B-2 – Data versus fitted values, preferred specification, $2 a day

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800

Mean income (ȳit)

P
ov

er
ty

H
ea

d
co

u
n
t

(H
it

)

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6

Gini (Git)

P
ov

er
ty

H
ea

d
co

u
n
t

(H
it

)

E[H|X]

Actual

Notes: Illustration of the model fit from the estimates presented in column (3) of Table 2. The left
panel shows the observed poverty rates (actual) and predicted poverty rates (Ê[H|X]) over mean
incomes; the right panel plots both over the Gini coefficient.
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B.2 Comparison with linear models

The fractional response model presented in this paper is very different from the standard

linear approaches. Here we explicitly compare some of their features to underline the

statements made in main text. As is typical for such comparisons, linearly and non-

linearly estimated elasticities are very similar on average. The differences emerge once

we use instrumental variables or examine elasticities away from the mean (which is also

further explored in Online Appendix C).

Table B-1 replicates the main models as they were advanced in the literature using our

data set. A key obstacle for the comparison is that these models are specified with logs

or log-differences in the dependent variable, while our approach models the conditional

expectation of the poverty rate directly. Hence we refrain from reporting measures of fit

that are generally much lower but not comparable to ours. Column (1) uses a simple fixed

effects specification with income and inequality on the right hand side. Column (2) uses

annualized differences instead. Column (3) specifies the ‘improved standard model’ as

proposed by Bourguignon (2003, see eq. (7) in the main text). Note that the coefficients

on several interaction terms are not significant, suggesting that the model may not be

correctly specified. Still, in all three cases, the results for the average elasticities are close

to ours, although the estimated Gini elasticity tends to be a bit higher.

The next three columns use GMM techniques with several external and internal

instruments to correct for measurement errors as in Kalwij and Verschoor (2007). The

instrument set varies across specifications and is reported in the table notes. Column

(4) repeats the simple difference specification but corrects for endogeneity. We now

obtain results for the average elasticities that are very similar to those of the fractional

response approach, although Hansen’s J-statistic casts some doubt on the validity of the

instrument set. Column (5) uses a similar instrumentation strategy for the improved

standard model. Now none of the coefficients on the variables involving ∆ lnGit are

significant. The implied elasticities are also very different from ours. Consider a one

percent increase in average income or inequality when both initial levels are at the lower

quartile of the data. Column (5) suggests an income elasticity of -2.05 and a Gini elasticity

of 2.68, whereas our model suggests they are -1.35 and 1.03, respectively. The linearly

estimated elasticities seem to be moving in the wrong direction. Column (6) mimics the

preferred specification of Kalwij and Verschoor (2007) by introducing the lagged levels

on their own. Now nearly all coefficients are insignificant and the specification even

implies a negative average Gini elasticity. Note that Kalwij and Verschoor (2007) do not

estimate a Gini elasticity that is negative on average and most of their coefficients are

highly significant. Our analysis, however, suggests that an instrument set which is often

weak or not plausibly exogenous leads to two-step GMM estimates of interaction models

which are very unstable and produce highly implausible estimates away from the mean.
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Table B-1 – Linear models – Dependent variable: lnHit or ∆ lnHit, $2 a day

OLS Two-Step GMM
(1) (2) (3) (4) (5) (6)

Within Differences Differences Differences Differences Differences
R+C ’97 R+C ’97 Bourg. ’03 R+C ’97 Bourg. ’03 K+V ’07

∆ ln ȳit -1.895 -0.268 -2.028 2.046 -0.362
(0.170) (0.617) (0.271) (1.043) (3.216)

∆ ln ȳit × ln(ȳi,t−1/z) -0.552 -0.995 -0.517
(0.179) (0.258) (0.785)

∆ ln ȳit × lnGi,t−1 1.108 3.445 2.097
(0.671) (1.192) (2.315)

∆ lnGit 2.336 -0.527 1.664 1.257 -8.222
(0.311) (1.449) (1.008) (4.127) (11.185)

∆ lnGit×ln(ȳi,t−1/z) 1.261 -0.315 -1.382
(0.427) (1.172) (1.996)

∆ lnGit × lnGi,t−1 -1.769 -1.416 -8.164
(1.586) (3.929) (8.296)

ln(ȳit/z) -2.114
(0.204)

lnGit 3.024
(0.409)

ln(ȳi,t−1/z) -0.023
(0.037)

lnGi,t−1 -0.129
(0.134)

¯̂εHȳ -2.114 -1.895 -1.755 -2.028 -1.905 -2.684
¯̂εHG 3.024 2.336 2.201 1.664 2.206 -2.345

N × T̄ 648 648 648 641 641 641
N 104 104 104 102 102 102
Hansen’s J (p-val.) – – – 0.0418 0.579 0.639

Notes: The table reports OLS and GMM estimates of the model suggested in the previous literature.
The dependent variable is the log (difference) of the poverty rate at $2 a day (in 2005 PPPs). The
panel structure is country-survey-year. All standard errors are robust to clustering at the country
level. The GMM results are estimated using two-step efficient GMM. Column (4) uses as instruments
∆PCEit, PCEi,t−1, ln ȳi,t−1 and lnGi,t−1. Column (5) uses as instruments ∆PCEit, PCEi,t−1,
∆PCEit × lnGi,t−1, ∆PCEit × ln(ȳi,t−1/z), ln ȳi,t−1, ln ȳi,t−1 × lnGi,t−1, ln ȳi,t−1 × ln(ȳi,t−1/z),
lnGi,t−1 and lnGi,t−1× lnGi,t−1. Column (6) uses the same instruments as column (5) but ln ȳi,t−1

and lnGi,t−1 instrument for themselves. All models include a constant (not shown) and column (1)
includes a time trend (not shown). Columns (2) and (4) are similar to Ravallion and Chen (1997)
but we update their approach by also including the Gini as in Adams (2004). Columns (3) and (5)
are similar to the ‘improved standard model 2’ in Bourguignon (2003). Column (6) is in the spirit
of the preferred specification in Kalwij and Verschoor (2007), who use the annualized log difference
of the population size (∆ ln popit) as an additional instrument and rely on real GDP per capita
instead of real per capita consumption. In our data, a first-stage F -test shows that ∆ ln popit is an
extremely weak instrument. Kalwij and Verschoor (2007) also use interactions of lagged inequality
and lagged income with regional dummies as instruments. However, first stage diagnostics suggest
a weak IV problem (the F -stat with regional dummy interactions is always lower than without) and
thus we opt for a simpler instrument set. Further, in column (5) and equation (7) we do not include
the lagged levels of income and inequality. Column (6) includes them for comparison with Kalwij
and Verschoor (2007).
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B.3 A new test of log-normality in aggregate poverty data

The model presented in eq. (13) of the main text can be modified to nest the case that the

data from each underlying household survey follow a log-normal distribution. Ignoring

heterogeneity, unbalancedness and endogeneity to simplify the exposition, we may specify

the conditional expectation function as

E[Hi|ȳit, σit] = Φ

(
α + β ln ȳit + γ1σ

2
it

exp(γ2 lnσ2
it)

)
, (B-1)

where ln σ2
t is obtained using eq. (6) from the main text (which is only valid under log-

normality) and enters the variance function in the denominator.

If poverty headcount ratios can be characterized by a log-normal distribution with

parameters that vary over surveys (i.e., countries and years in our case), then we should

find β = −1 and γ1 = γ2 = 1/2.1 Testing these restrictions amounts to testing for log-

normality in the underlying income or consumption data. To see this, simply insert these

parameter values, along with α = ln z, to recover the right-hand side of eq. (2) from the

main text. We only use the slope parameters for the joint test since we later introduce

additional dummies to account for different survey types and unbalancedness. A Monte

Carlo simulation suggests that such a test is accurately sized in samples such as ours.

Table B-2 applies this test to our panel of aggregated household surveys. The

three specifications mimic the corresponding columns in Table 2 from the main text

but introduce inequality in line with the log-normal distribution; the added variance

parameter in particular diverges substantially from its log-normal value. In all three

columns, we strongly reject the null of log-normality. The parameter values in column

(1) are numerically close to their log-normal counterparts but begin to diverge once

we account for unbalancedness and endogeneity in columns (2) and (3). The overall

fit is slightly improved but the improvement is tiny once unbalancedness is accounted

for. The estimated income semi-elasticity barely moves so that practical implications

are limited anyway. The results strongly favor our simpler and less assumption-laden

approximation. This reflects a well-known result, namely, the log-normal distribution is

a good first approximation to income and poverty data but does not hold up to closer

scrutiny.

1Gibrat’s law is one way how the log-normal distribution can arise from a sequence of stochastic
income shocks. Consider ln yt = ln yt−1 + et, where et is a random transitory shock in log-income ln yt.
As t grows the distribution of et determines the distribution of ln yt. Battistin, Blundell, and Lewbel
(2009) recently argued that this process is better thought of in terms of permanent income and suggest
that consumption is closer than income to a log-normal distribution.
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Table B-2 – LN fractional probit models (QML) – Dependent variable: Hit, $2 a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

Mean function

ln ȳit -1.059 -0.284 -1.134 -0.281 -1.206 -0.302
(0.020) (0.005) (0.040) (0.005) (0.373) (0.020)

σ2
it 0.518 - 0.595 - 0.585 -

(0.020) (0.030) (0.185)
ν̂it 0.065

(0.062)

Variance function

lnσ2
it 0.430 0.372 0.380

(0.022) (0.023) (0.031)

Joint test of log-normality

p-value 0.003 0.000 0.001

Summary statistics

Scale Factor 0.260 0.248 0.252
N × T̄ 789 789 775
N 104 104 103
pseudo-R2 0.997 0.998 0.998
lnL -314.9 -314.4 -312.2√
MSE 0.0157 0.0112 0.0115

Notes: The table reports fractional response QML estimates. The dependent variable is the poverty
rate at $2 a day (in 2005 PPPs). 20 observations with Ti = 1 are not used during estimation. The
panel structure is country-survey-year. σ2

it is the variance of the log-normal distribution which we
obtained by inverting eq. (6) from the main text. The joint test of normality reports the result of
a Wald test of the null hypothesis that the coefficient on ln ȳit is unity and the coefficients on the
two σ2

it terms are both one-half. In models (1) and (2), the standard errors of the coefficients are
robust to clustering at the country level and the standard errors of the APEs are computed via
the delta method. The standard errors of the coefficients and the APEs in model (3) account for
the first stage estimation step with a panel bootstrap using 999 bootstrap replications. The linear
projection in the first stage uses lnPCEPit as an instrument for ln ȳit. The first-stage cluster-robust
F-statistic in (3) is 28.05. Model (3) also excludes West Bank and Gaza entirely (2 observations)
and 12 observations from ECA countries pre-1990 for lack of PCE data.
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B.4 Specifications with other covariates

In policy circles it is sometimes suggested that the income and inequality elasticities

can “vary” as functions of other, more substantive factors (see, e.g., Epaulard, 2003).

However, if the intrinsic non-linearity arising from differences in income and in the shape

of the distribution is fully accounted for, then theoretically there is no room for additional

factors to play a role. Here we show that this is indeed the case when our fractional

response approach is used.

Table B-3 extends our main regression results with data on institutions, human

capital, access to credit and trade openness. The APEs of income and inequality are

not affected by the inclusion of the additional covariates and the APEs of the latter are

virtually zero. Contrary to linear approximations, the fractional response approach leaves

little room for misspecification of the decomposition. In other words, the relevant link

is not between some factor X and a measure of poverty, but between X and income or

inequality; those are the causal relationships deserving closer theoretical and empirical

attention. Thus if one is interested in the effects of, say, institutions on poverty, our

recommendation is to investigate the effects of institutions on income and inequality.

Distinguishing this layer of relationships is important, as the impacts of income and

distributional changes themselves depend on the initial levels of income and inequality.
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Table B-3 – Fractional probit models (QMLE) – Dependent variable: Hit, $2 a day

(1) (2) (3) (4)
Institutions Human Capital Credit Trade
Hit APEs Hit APEs Hit APEs Hit APEs

ln ȳit -0.888 -0.285 -0.878 -0.284 -0.950 -0.289 -0.708 -0.302
(0.050) (0.012) (0.060) (0.011) (0.036) (0.009) (0.032) (0.012)

lnGit 0.779 0.250 0.805 0.261 0.765 0.233 0.581 0.248
(0.107) (0.028) (0.104) (0.027) (0.102) (0.027) (0.097) (0.033)

Executive Constraints 0.005 0.001
(0.005) (0.001)

Years of Schooling -0.002 -0.001
(0.017) (0.006)

Private Credit / GDP -0.007 -0.002
(0.040) (0.012)

Trade Openness 0.005 0.002
(0.017) (0.007)

Scale factor 0.321 0.324 0.304 0.426
N × T̄ 678 705 697 385
N 85 87 93 81
AIC 894.8 914.1 887.6 552.5
lnL -276.4 -286.1 -282.8 -163.2√
MSE 0.0203 0.0211 0.0201 0.0233

Notes: The table reports fractional response QML estimates. The dependent variable is the poverty
rate at $2 a day (in 2005 PPPs). The panel structure is country-survey-year. The estimation samples
are reduced due to the incomplete data coverage of the covariates. Observations with Ti = 1 are
not used in estimation. All models include time averages (CRE), time dummies, survey dummies,
panel size dummies and interactions between the panel size dummies and the time averages (CRE).
The time averages are recomputed for each sample size. The coefficients of the time averages of the
survey dummies and time effects are constrained to be equal across the panel sample sizes. The
variance function depends on the sample size. The standard errors of the coefficients are robust
to clustering at the country level and the standard errors of the APEs are computed via the delta
method. Data on Executive Constraints is from the Polity IV database. Human capital is measured
as Total Years of Schooling from Barro and Lee (2013). We linearly interpolate the five-yearly data
to an annual series. Private Credit / GDP measures financial development and is from Beck et al.
(2010). Trade Openness is the de jure binary measure from Wacziarg and Welch (2008).
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B.5 Cross-validation tests

We conduct two cross-validation tests in order to asses the out-of-sample performance of

our fractional response approach. The first test focuses on regional and developing world

aggregates, since these are the statistics we chose to forecast in the poverty projections.

The second test focuses on how accurately we can predict the individual observations

underlying these summary statistics.

Table B-4 uses the observations before 2005 as testing data to predict average regional

poverty rates over the period from 2005 to 2010. The fit is remarkably close: the
√
MSE

for these six regional data points is 0.011 and the pseudo-R2 is 0.998. The forecast of

the developing country aggregate is off by less than 0.2 percentage points, while most

regional forecasts are off by less than half a percentage point. Only in South Asia and

Sub-Saharan Africa we observe forecast errors up to 2 percentage points.

Table B-5 conducts a 10-fold cross-validation where 10% of the time periods are

deleted in each fold but the panel structure is otherwise kept intact. This test is

considerably more demanding as we now randomly remove countries in some years, even

back to 1981, and focus on how well we are able to match their actual poverty rates. Note

that our panel is so heavily unbalanced (see Table A-1) that this exercise sometimes uses

only one observation in a country to predict another observation which is potentially

very far apart (and may use a different survey methodology). Nevertheless, we find a

cross-validation error of about 3.6 percentage points and a mean absolute error (MAE)

of about 2.5 percentage points – less than twice the in-sample error.
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Table B-4 – Predicting the 2005–2010 period with data from before

Region (r) Predicted ˆ̄Hr True H̄r Absolute Error (| ˆ̄Hr − H̄r|)
East Asia and Pacific 0.35589 0.35458 0.00131
Eastern Europe and Central Asia 0.03008 0.02612 0.00397
Latin America and Caribbean 0.12292 0.11684 0.00608
Middle East and North Africa 0.13103 0.13535 0.00431
South Asia 0.68712 0.66714 0.01998
Sub-Saharan Africa 0.68642 0.70236 0.01594

Developing world 0.32925 0.32777 0.00148

Notes: The table reports pseudo out-of-sample forecasts where the data before 2005 are used as
training data to predict the observed data in the 2005 to 2010 period (testing data). The dependent
variable is the poverty rate at $2 a day (in 2005 PPPs). The results have not been population-
weighted and are not comparable to the 2010 baseline used in the projections.
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Table B-5 – 10-fold cross-validation – preferred specification

Fold
√
MSE MAE Pseudo-R2 % Training % Testing

1 0.03354 0.02649 0.991 0.962 0.038
2 0.02779 0.01958 0.992 0.892 0.108
3 0.04142 0.02814 0.985 0.911 0.089
4 0.03623 0.02765 0.988 0.865 0.135
5 0.03838 0.02471 0.986 0.855 0.145
6 0.04448 0.03260 0.984 0.932 0.068
7 0.03550 0.02464 0.988 0.900 0.100
8 0.03134 0.02427 0.989 0.871 0.129
9 0.03000 0.01957 0.989 0.907 0.093
10 0.04397 0.02533 0.982 0.904 0.096

CV(10) - Averages 0.03668 0.02530 0.987 0.900 0.100

Notes: The table reports the results of a 10-fold cross-validation exercise for panel data. In each
fold, about 10% of the time series data are deleted while all countries remain in the sample. The
remaining 90% of the data (training data) are then used to predict these 10% of observations (testing
data).

√
MSE is the root mean squared error, MAE is the mean absolute out-of-sample error, and

the pseudo-R2 is the squared correlation of the out-of-sample predictions with the testing data. The
dependent variable is the poverty rate at $2 a day (in 2005 PPPs).
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B.6 Results for the $1.25 a day poverty line

The analysis done in the paper for the $2 a day poverty line was repeated using the $1.25

a day line. The results are presented here. The main differences are in the projections.

Table B-6 reports the regression results where we progressively account for more

features of the data. The results are qualitatively and quantitatively very similar to those

presented in the main text. Comparing columns (1) and (2) shows that unbalancedness

makes little difference in practice, but accounting for endogeneity does. The average

income semi-elasticity increases from column (2) to column (3) by an amount comparable

to the increase at the $2 line. The Hausman test in column (3) fails to reject the null

of exogeneity at conventional levels when we bootstrap over the first stage, but rejects

the null at the 5% level when we ignore the first-stage. This is still to be interpreted

as evidence of endogeneity since the null hypothesis does not depend on the first stage

uncertainty. The average elasticities implied by these models are larger in absolute value

than in the $2 a day case (¯̂εHȳ ≈ −2.70 with se = 0.286 and ¯̂εHG ≈ 2.56 with se = 0.325),

while the estimated semi-elasticities are marginally smaller in absolute value. This is to

be expected since lowering the absolute poverty line is equivalent to making all countries

richer. The fit is about the same at both poverty lines.

The contributions of growth and distributional change to poverty reduction are shown

in Table B-7. Numerically these estimates differ from those presented in the main text

but, here too, the qualitative pattern is virtually the same. Panel (a) shows that

distribution played a larger role over the entire 1982 to 2010 period at the $1.25 a

day poverty line than at $2 a day. About one fourth of poverty reduction was due to

redistribution and three fourths were due to income growth. Once we split the sample at

the turn of the millennium, this share doubles from about 15% before 2000 to more than

a third in the period since 2000. Interestingly, we observe this rise in every geographical

region and it occurs together with a positive correlation between the two components in

every region (now including in East Asia).

Table B-8 reports the projection results for the $1.25 a day poverty line, based on

the estimates of column (2) in Table B-6 and the different scenarios described in the

main text. With optimistic, distribution-neutral growth, we project a global poverty

rate of 9.11% in 2030, or about 655 million extremely poor people. About 76% of those

live in Sub-Saharan Africa and about 17% in South Asia. Under moderate growth we

project a global poverty rate of 13.2% in 2030, or about 950 million extremely poor

people versus 1.2 billion in 2010. About 70% of the world’s poor will live in Sub-Saharan

Africa and about 23% in South Asia by 2030. Under a pessimistic, distribution-neutral

growth scenario, there is almost no progress at all. In all three cases, the pace of poverty

reduction slows down considerably, both in terms of relative changes and in terms of the

poor population.
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Table B-6 – Fractional probit models (QML) – Dependent variable: Hit, $1.25 a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

ln ȳit -1.212 -0.216 -0.668 -0.218 -0.822 -0.259
(0.056) (0.010) (0.038) (0.008) (0.186) (0.033)

lnGit 1.238 0.221 0.726 0.237 0.779 0.245
(0.121) (0.022) (0.074) (0.020) (0.177) (0.031)

ν̂it 0.152
(0.104)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance function No Yes Yes

Scale factor 0.179 0.326 0.315
N × T̄ 768 768 754
N 103 103 102
pseudo R2 0.975 0.990 0.991
lnL -172.4 -244.7 -243.5√
MSE 0.0339 0.0214 0.0204

Notes: The table reports fractional response QML estimates. The dependent variable is the poverty
rate at $1.25 a day (in 2005 PPPs). 21 observations with Ti = 1 are not used during estimation.
The panel structure is country-survey-year. The $1.25 a day sample is smaller as for 20 observation
we only have data at the $2 a day line. In columns (1) and (2), the standard errors of the coefficients
are robust to clustering at the country level and the standard errors of the APEs are computed via
the delta method. We include the time averages of the survey type and time dummies in columns
(2) and (3), but constrain their coefficients to be equal across the panel sizes. The standard errors
of the coefficients and the APEs in model (3) account for the first stage estimation step with a panel
bootstrap using 999 bootstrap replications. The linear projection in the first stage uses lnPCEPit as
an instrument for ln ȳit. The first-stage cluster-robust F-statistic in column (3) is 24.40. Column (3)
also excludes West Bank and Gaza entirely (2 observations) and 12 observations from ECA countries
pre-1990 for lack of PCE data.
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Table B-7 – Decomposition at $1.25 a day poverty line, by region

Var(Y ) Var(D) Cov(Y,D) sY sD
√
MSE N

Panel (a) Spells from 1981 to 2010

East Asia and Pacific 2.270 0.706 0.274 72.20 27.80 0.89 12
Europe and Central Asia 1.838 0.656 0.405 67.88 32.12 0.32 38
Latin America and Caribbean 1.908 0.646 -0.780 113.43 -13.43 0.79 28
Middle East and North Africa 0.078 0.048 0.027 58.32 41.68 0.34 8
South Asia 0.686 2.606 -0.009 20.68 79.32 0.47 7
Sub-Saharan Africa 2.107 0.381 -0.246 93.21 6.79 0.47 29

All developing 2.165 0.698 0.074 74.36 25.64 0.57 122

Panel (b) Spells from 1981 to 1999

East Asia and Pacific 2.922 0.336 0.293 83.63 16.37 1.04 9
Europe and Central Asia 8.626 1.541 -0.305 87.07 12.93 0.50 23
Latin America and Caribbean 2.271 1.045 -0.782 84.98 15.02 0.92 26
Middle East and North Africa 0.129 0.011 -0.000 92.16 7.84 0.35 6
South Asia 0.887 0.234 0.115 74.15 25.85 0.47 4
Sub-Saharan Africa 4.775 1.821 -0.686 78.28 21.72 1.30 17

All developing 5.253 1.126 -0.269 85.32 14.68 0.90 85

Panel (c) Spells from 2000 to 2010

East Asia and Pacific 1.244 1.254 0.139 49.82 50.18 0.76 9
Europe and Central Asia 1.432 0.213 0.369 75.55 24.45 0.41 25
Latin America and Caribbean 0.216 0.094 0.073 63.36 36.64 0.42 19
Middle East and North Africa 0.064 0.029 0.028 61.80 38.20 0.40 5
South Asia 0.250 1.138 0.346 28.65 71.35 0.43 6
Sub-Saharan Africa 2.824 1.604 0.645 60.67 39.33 1.00 21

All developing 1.652 0.714 0.438 64.46 35.54 0.65 85

Notes: The table reports the results of the decomposition of the observed changes in the poverty
rate at $1.25 a day into its growth and distribution components at the regional level. The estimates
are based on column (3) of Table B-6. Panels (a) to (c) run this decomposition over different sub-
samples as denoted in the table. We predict the counterfactual quantities using the first and last
available data for the longest runs of survey of the same type within the sample period.
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C Monte Carlo simulations

C.1 Approximation errors in the estimated elasticities

Our benchmark is a balanced panel of average incomes, Gini coefficients and poverty

rates derived from a log-normal distribution. The log-normal panel DGP is defined as

follows. For each replication we generate µit = 4.75 + eit with eit ∼ U [−1.75, 1.75]

and σit = 0.8 + uit with uit ∼ U [−.25, .25] where i = 1, . . . , N and t = 1, . . . , T . The

corresponding formulas for mean income, the Gini coefficient and the headcount ratio are

given in Table C-1. The poverty line is $2 a day throughout.

The observed headcount is the average of a sequence of Bernoulli draws, i.e. Hit ∼
B(B,H∗it)/B, where B is the number of trials and H∗it is the poverty rate drawn from

the specified distribution. R is the number of Monte Carlo replications. We typically

set N = 100, T = 10, B = 1000 and R = 1000. This mimics key features of the data

analyzed in the main text but abstracts from measurement error and endogeneity.

The parameter values for the log-normal (and all other distributions) were chosen to

match key features of the data. The simulated values approximately cover the range of

observed incomes and the Gini coefficients, generate an average poverty rate around 30%,

and imply an average income elasticity around two. Hence, our experiment reflects the

range of observed experiences from Guinea to the Czech Republic.

To benchmark the performance of our model against the standard approach, we then

compute (i) the average of the actual income (semi-)elasticities at each point, (ii) the

average of the estimated (semi-)elasticities from a simplified fractional response model,

and (iii) the estimated (semi-)elasticities from an OLS regression in differences with

interactions (with and without logs on the left hand side).

Table C-2 reports the results. As expected, the log-linear and the fractional models

perform similarly if we only focus on averages. Panel (a) shows that the mean relative

error (MRE) of the income elasticity is around 10% in both cases. However, the fractional

response model performs uniformly better once we focus on predictions away from the

overall mean (median). The MRE of the fractional response model is always below

or near 10% even in the tails of the distribution of ȳit, whereas the linear model with

interactions is strongly biased (e.g. up to 372% at the fifth percentile of ȳit). Panel (b)

focuses on the income semi-elasticity – the natural parameter of the fractional response

model. Now the fractional response approach outperforms the linear model on average

(with a relative error far below 1%) and remains accurate for semi-elasticities in the tails

of the income distribution. The linear model produces semi-elasticities that vary very

little and are heavily biased away from the mean. We only report income effects here,

but the results for the Gini elasticities and semi-elasticities are comparable.
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Table C-2 – Monte Carlo – QML versus OLS

Actual
Fractional response approach Improved standard model

Estimate MRE
√
MSE Estimate MRE

√
MSE

Panel (a) Income elasticity of poverty εHȳ

Mean -1.9966 -1.8296 0.0837 0.1683 -1.7548 0.1211 0.2452

At percentile of ȳ
. . .P5 -0.2869 -0.2926 0.0199 0.0063 -1.3585 3.7348 1.0726
. . .P25 -0.8338 -0.7773 0.0677 0.0569 -1.5340 0.8398 0.7018
. . .P50 -1.8945 -1.6937 0.1060 0.2015 -1.7518 0.0753 0.1563
. . .P75 -3.1784 -2.8122 0.1152 0.3671 -1.9698 0.3803 1.2106
. . .P95 -4.2812 -3.7806 0.1169 0.5017 -2.1707 0.4930 2.1116

Panel (b) Income semi-elasticity of poverty ηHȳ

Mean -0.2609 -0.2610 0.0002 0.0018 -0.2991 0.1463 0.0386

At percentile of ȳ
. . .P5 -0.2528 -0.2528 0.0002 0.0018 -0.3625 0.4340 0.1105
. . .P25 -0.4962 -0.4665 0.0599 0.0298 -0.3343 0.3264 0.1624
. . .P50 -0.3362 -0.3587 0.0669 0.0227 -0.2991 0.1105 0.0413
. . .P75 -0.0844 -0.0885 0.0493 0.0045 -0.2640 2.1288 0.1797
. . .P95 -0.0180 -0.0127 0.2951 0.0053 -0.2358 12.1235 0.2179

Notes: The table reports the results of 1000 Monte Carlo simulations based on log-normal data with
1000 observations (100 countries over 10 years). Panels (a) and (b) show the results from applying
the proposed panel QML estimator and OLS with interactions to the simulated data. Panel (a)
reports elasticities, Panel (b) semi-elasticities.
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C.2 Approximation errors in the estimated headcount ratios

We now show that our approach also works well when incomes are drawn from a variety of

two and three-parameter distributions. We exclusively focus on the ability of our model to

recover the cross-country distribution of poverty rates. The rationale behind this choice

is simple. Elasticities and semi-elasticities are point-derivatives at the estimated poverty

rates. If our model does a good job recovering the latter, the former are likely to be closely

approximated as well. There is also a pragmatic reason. More complicated distributions

often do not have closed-form solutions for the income and inequality elasticities (see

Bresson, 2009, for an alternate approach using Lorenz curves). We do not compare these

results to the standard linear approach, since the latter is formulated in differences and

not designed to predict poverty rates directly.

We proceed in line with the simulations presented above. Table C-1 lists the DGPs

and characteristics of the five chosen functional forms. The panel is still balanced with

N = 100 and T = 10. We generate random data by averaging 1000 Bernoulli draws

and run 1000 simulations. Table C-1 reports the corresponding results. For each of

the five distributions, we compute the average poverty rate and five percentiles of the

distribution. Our estimates are usually within one percentage point of the generated

data, but can reach an absolute bias of 3–4 percentage points. Noticeable discrepancies

only occur in the lowest and highest percentiles. There, theMRE can be sizable, although

the percentage point differences remain moderate.

We also compute a standard error which focuses on the individual observations in

each replication data set. Specifically, we take the square root of the average MSEs

over all replications. This standard error varies from about 2 percentage points (log-

normal) to 6 percentage points (Weibull), suggesting that even at the level of individual

observations we are not too far off the actual data. For the log-normal and Singh-Maddala

distributions, this is comparable to the
√
MSE of our preferred specification in the main

text.
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Table C-3 – Monte Carlo – QML with various income distributions

Estimate Actual Bias MRE
√
MSE

Panel (a) Log-normal DGP

Mean of Hit 0.3259 0.3261 0.0001 0.0004 0.0002
. . .P5 0.0013 0.0031 0.0018 1.3999 0.0018
. . .P25 0.0292 0.0305 0.0013 0.0434 0.0024
. . .P50 0.2111 0.2140 0.0029 0.0137 0.0064
. . .P75 0.6136 0.6144 0.0008 0.0013 0.0070
. . .P95 0.8821 0.8768 -0.0053 0.0060 0.0081

Panel (b) Weibull DGP

Mean of Hit 0.3465 0.3462 -0.0002 0.0007 0.0003
. . .P5 0.0654 0.0801 0.0147 0.2247 0.0148
. . .P25 0.1556 0.1651 0.0096 0.0616 0.0101
. . .P50 0.2875 0.2695 -0.0180 0.0625 0.0185
. . .P75 0.4669 0.4844 0.0176 0.0376 0.0194
. . .P95 0.8845 0.8446 -0.0399 0.0452 0.0425

Panel (c) Fisk DGP

Mean of Hit 0.3089 0.3084 -0.0005 0.0015 0.0005
. . .P5 0.0254 0.0427 0.0173 0.6796 0.0174
. . .P25 0.0909 0.0922 0.0013 0.0145 0.0033
. . .P50 0.2105 0.2088 -0.0017 0.0081 0.0053
. . .P75 0.4817 0.4808 -0.0008 0.0017 0.0093
. . .P95 0.8600 0.8437 -0.0163 0.0190 0.0195

Panel (d) Dagum DGP

Mean of Hit 0.3249 0.3239 -0.0010 0.0030 0.0010
. . .P5 0.0173 0.0354 0.0181 1.0511 0.0182
. . .P25 0.0940 0.1002 0.0061 0.0649 0.0069
. . .P50 0.2407 0.2346 -0.0061 0.0254 0.0079
. . .P75 0.5120 0.5067 -0.0052 0.0102 0.0105
. . .P95 0.8720 0.8559 -0.0162 0.0185 0.0192

Panel (e) Singh-Maddala DGP

Mean of Hit 0.3416 0.3423 0.0006 0.0019 0.0006
. . .P5 0.0548 0.0519 -0.0029 0.0529 0.0036
. . .P25 0.1380 0.1354 -0.0027 0.0194 0.0038
. . .P50 0.2689 0.2749 0.0060 0.0221 0.0069
. . .P75 0.4904 0.5061 0.0157 0.0319 0.0167
. . .P95 0.8733 0.8396 -0.0337 0.0386 0.0352

Notes: The table reports the results of 1000 Monte Carlo simulations based on the DGPs given
in Table C-1 with 1000 observations (100 countries over 10 years). Panels (a) to (e) show results
obtained by applying the proposed panel QML estimator under each specified income distribution.
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