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Introduction

Stata can easily estimate a binary response probit models with modeled heteroskedasticity
(hetprob) or without heteroskedasticity (probit or glm). Nevertheless, it only allows for
estimation of fractional response models without heteroskedasticity via the GLM suite.
The reason behind this restriction is purely computational. The official implementations
of probit models take advantage of several mathematical simplifications that are only
available when the dependent variable is either strictly zero or unity.

Cutting out “unnecessary” computations positively affects runtime, especially on
larger datasets, but sacrifices generality. Thanks to Stata’s comprehensive and easy to
use maximum likelihood suite, writing a simple linear form MLE for fractional response
models with heteroskedasticity is near trivial (Gould, Pitblado, and Poi 2010). However,
estimation relying only on numerical derivatives may be computationally expensive. The
log-likelihood for (fractional) probit models with heteroskedasticity is difficult to maxi-
mize and may take a substantial amount of time if both the gradients and Hessian are
computed numerically. Yet, speed may matter a lot for larger data sets.

The program described in this note (fhetprob) extends Stata’s own hetprob com-
mand to allow for fractional response variables and computes all likelihood derivatives
analytically in order to realize significant speed gains over a simple linear form ML esti-
mator. While fhetprob can estimate binary response models as a special case, it is by
no means a replacement for Stata’s own method as it will run slower than hetprob even
with moderately large N.!

Fractional response models have several important applications and are gaining pop-
ularity in econometrics. They can be applied to estimate models of proportions in
cross-sectional data (Papke and Wooldridge 1996; Wooldridge 2010a) and balanced pan-
els which may be subject to unobserved heterogeneity and endogeneity (Papke and
Wooldridge 2008). However, many panel data sets used in applied research are un-
balanced, sometimes heavily so. To estimate fractional response models with unbalanced
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!Simulations with binary responses show that with N = 1000 they are just about equally fast, but
with N = 10* fhetprob is ~ 25% slower. However, the loss is not increasing in N beyond that point,
it’s still about 25% with N = 10° and N = 106).



panels the conditional variance should be allowed to vary with the nature of the unbal-
ancedness and thus requires models that explicitly allow for certain forms of heteroskedas-
ticity (Wooldridge 2010b). This note outlines the methods behind fhetprob and provides
examples for cross-section and unbalanced panel data.

Method

A classic probit DGP in index model notation supposes that y = 1[x;3 + €] with a
constant error variance (Varle] = ¢2). If we relax the constant variance assumption and
instead assume the error variance depends on z; as follows Var[e|x;, z;] = (exp(z}v))?, we
obtain a probit model with multiplicative heteroskedasticity (Harvey 1976).

Fractional probit models are defined analogously but instead of the index model,
assume that the conditional expectation of the outcome is defined by a probit
‘link” function such that E[y|x;] = @ (x3). Then, similarly to the binary case, a
fractional response model with multiplicative heteroskedasticity can be written as
Ely|x;] = © (x}8 x exp(—z/v/2)), see for example Wooldridge (2010b). In both cases,
the typical Bernoulli likelihood is
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where G(-) = ®(-) is the probit link function (or standard normal c.d.f.).
Since the Bernoulli distribution is in the linear exponential family (LEF), the corre-
sponding quasi-maximum likelihood estimator (QMLE) solves
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To accommodate the fractional case, no simplifications are used that rely on assuming
that y; can only take on unity or zero (e.g. see, Greene 2011, 690-692), hence the deriva-
tion involves a little more algebra than otherwise.

The likelihood equations are
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where w; = x/8 X exp(—z/v).
The Hessian terms are
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where s; = ¢(w;)/P(w;) and ¢; = ¢(w;)/P(—w;). The Hessian is then just the collection
of the Hessian terms.

Equations (2) to (7) are then used to define an e2 (formerly d2) type ML evaluator
in Stata which supports equation-level scores (Gould, Pitblado, and Poi 2010). Robust
variance-covariance estimation is essential because this is a QLME estimator for which
we are assuming a correctly-specified conditional mean but allow all other features of the
distribution to be misspecified (Gourieroux, Monfort, and Trognon 1984). As Papke and
Wooldridge (1996) point out, regular standard errors based on the inverse information
matrix will be too large and do not approximate the asymptotic standard errors if the
GLM variance assumption Var[y|x,z] = 0?E[y|x,z] — (1 — E[y|x, z]) is violated or holds
with underdispersion (02 < 1). By the same reasoning pooled QMLE for panel models
also necessarily implies clustering. Stacking the estimated coefficients as 0= (,8 %), the
fully robust variance estimator using the empirical Hessian is
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where s; is the individual contribution to the log-likelihood (or equation-level score).

Partial Effects

Similar to the case of binary response probit, the estimated coefficients are scaled by
a common factor that varies from specification to specification. However, depending
on the variance equation, a single coefficient may no longer reveal the sign or relative
magnitude of the estimated effect. To obtain the partial (marginal) effect of a particular
continuous variable (wy), we take derivatives with respect to the corresponding elements
in the outcome and/or variance equation. The key complication is that wy, can be in x;,
z; or both, hence we define the estimated partial effect as follows.
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where the two indicator functions toggle the cases: 1) wy € x; and wy, ¢ z;, 2) wy ¢ x;
and wy € z;, and 3) w, € x; and wy € z;. In the case of dummy variables, discrete
differences should be used instead.

The individual partial effects can the be averaged across the sample population to
obtain the average partial effects (APEs), partial effects estimated at the mean of the
covariates, or partial effects estimated at other interesting values (say, quantiles). The
standard errors of these quantities can be bootstrapped or derived explicitly using the
delta method. Stata’s margins command conveniently implements the delta method
using numerical approximations for all estimation commands that can recover the condi-
tional expectation of the outcome variable. Thus, margins uses fhetprob’s predictions
for E[y|x, z] to estimate the desired partial effects of the conditional mean. The second
example below illustrates this numerically.

Examples

Cross-section Data: Absent panel data, applications of fractional or binary response
variables with heteroskedasticity are rare and require a strong prior knowledge or hy-
potheses about the underlying data generation process. The fudamental problem is that
in these models it’s impossible to distinguish between a mispecified mean and variance
equation. The following example is taken from the Stata manual for hetprob and mainly
serves to illustrate the unusual behavior when calling fhetprob with a binary depen-
dent variable instead of a fractional response (for additional details see the [R] hetprob
section of the Stata manuals).

. clear

. set obs 1000

obs was 0, now 1000

. set seed 1234567

. gen x = 1-2xruniform()

. gen xhet = runiform()

. gen sigma = exp(1l.5*xhet)

. gen p = normal((0.3+2%x)/sigma)
. gen y = cond(runiform()<=p,1,0)

. fhetprob y x, het(xhet) nolog

The dependent variable is binary and not a fractional response. Consider using
the official ’hetprob’ command instead. The fhetprob program does not verify
if the outcome variable is specified correctly for the binary response case.

Heteroskedastic fractional probit model Number of obs = 1000
Wald chi2(1) = 65.23
Log pseudolikelihood = -569.4783 Prob > chi2 = 0.0000



Robust

|
y | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
_____________ o
y |
x | 2.22803 .2758597 8.08 0.000 1.687355 2.768705
cons | .2493821 .0843367 2.96 0.003 .0840853 .4146789
_____________ A
lnsigma2 |
xhet | 1.602537 .2671326 6.00 0.000 1.078967 2.126107
Wald test of lnsigma2=0: chi2(1) = 35.99 Prob > chi2 = 0.0000

For fractional responses oim SEs are too big, robust option implied to correct
bias. For binary responses non-robust SEs can be obtain with option vce(oim).

First, notice how the program warns the user that fhetprob is not designed for binary
outcomes. It offers no corresponding data checks, less options and runs slower on binary
outcomes. Second, since the program assumes a fractional response outcome, it will
automatically act as if the user intended to specify the robust option. In all other
aspects, the results are identical to invoking hetprob with robust and, as expected, we
cannot reject that the estimated coefficients are equal to their true value.

Unbalanced Panel Data with Correlated Random Effects: This example is taken
from Jeffrey Wooldridge’s 2011 presentation at the Chicago Stata Users group meeting.
The data is from Papke’s (2005) paper “The effects of spending on test pass rates: evi-
dence from Michigan” published in the Journal of Public Economics. An updated version
of this data is also used by Papke and Wooldridge (2008).

The dependent variable is the fraction of fourth graders passing the math test of the
Michigan Education Assessment Program (MEAP) in a particular school. The coefficient
of interest is on lavgrexp (log of average expenditure per student). Additional controls
are the fraction of students eligible for the free or reduced-price lunch programs (lunch),
the log of the number of students enrolled in each school (lenrol), and a set of time
dummies (y95 to y98). To allow for unobserved heterogeneity in the form of Correlated
Random Effects (CRE), the time averages of all time-varying covariates are included and
given the suffix b (for details see Wooldridge 2010b). Further, both the outcome and
variance equation are allowed to depend on the number of observations within each sub-
panel (T;), denoted tobs3 and tobs4, relative to T; = 5. There are no obsvervations with
T; = 1, but in other application these would need to be dropped.

The script below first downloads several datasets, unzips and then loads the MEAP
data. Alternatively, this can be done manually beforehand.

. global url ///
"http://mitpress.mit.edu/sites/default/files/titles/content/wooldridge/"

. copy $url/statafiles.zip woold2nd.zip, replace

. unzipfile woold2nd.zip

. use meap94_98, clear
. tab tobs



number of

I
time |
periods | Freq Percent Cum
____________ o
31 1,512 21.15 21.15
4 | 1,028 14.38 35.52
5 | 4,610 64.48 100.00
____________ o
Total | 7,150 100.00
. gen tobs3 = (tobs == 3)
. gen tobs4 = (tobs == 4)

. replace math4 = math4/100

. fhetprob math4 lavgrexp lunch lenrol y95 y96 y97 y98 lavgrexpb ///
lunchb lenrolb y95b y96b y97b y98b tobs3 tobs4, ///
het (tobs3 tobs4) vce(cluster schid) nolog

Heteroskedastic fractional probit model Number of obs = 7150
Wald chi2(16) 3367.03
Log pseudolikelihood = -4414.841 Prob > chi2 = 0.0000

(Std. Err. adjusted for 1683 clusters in schid)

| Robust
math4 | Coef . Std. Err. z P>|z]| [95% Conf. Intervall
_____________ e
math4 |
lavgrexp | .1142198 .0735598 1.55 0.120 -.0299547 .2583943
lunch | -.0013961 .001221 -1.14 0.253 -.0037891 .0009969
lenrol | -.067624 .0561521 -1.20 0.228 -.1776802 .0424321
y95 | .3241894 .0150181 21.59 0.000 .2947545 .35636243
y96 | .3724917 .0203004 18.35 0.000 .3327036 .4122797
yo7 | .2830853 .0217498 13.02 0.000 .2404566 .325714
y98 | .7162732 .0239386 29.92 0.000 .6693543 .763192
lavgrexpb | .1622915 .0957332 1.70 0.090 -.0253421 .3499251
lunchb | -.0126246 .0012652 -9.98 0.000 -.0151044 -.0101448
lenrolb | -.0029271 .0610953 -0.05 0.962 -.1226718 .1168175
y95b | .8794233 .5371531 1.64 0.102 -.1733774 1.932224
y96b | .7270717 .2073896 3.51 0.000 .3205955 1.133548
y97b | .6338043 .4187646 1.51 0.130 -.1869593 1.454568
y98b | .273375 4579277 0.60 0.551 -.6241467 1.170897
tobs3 | .0222168 .0562549 0.39 0.693 -.0880408 .1324744
tobsd | .0884656 .0891879 0.99 0.321 -.0863394 .2632706
_cons | -1.856402 .6052343 -3.07 0.002 -3.042639 -.6701641
_____________ o
lnsigma?2 I
tobs3 | .2007709 .0566528 3.54 0.000 .0897335 .3118083
tobs4d | .5504932 .1162986 4.73 0.000 .3225522 .7784343
Wald test of lnsigma2=0: chi2(2) = 32.52  Prob > chi2 = 0.0000

The coefficients are scaled and cannot be interpreted directly. However, we can easily



obtain the average partial effects either manually using case 1 of formula (9) or automat-
ically via margins:

. predictnl double pe=normalden(xb(#1)/exp(xb(#2)))*_b[lavgrexp]/exp(xb(#2))
. summarize pe

Variable | Obs Mean Std. Dev. Min Max

_____________ +________________________________________________________
pe | 7150 .0359899 .0072119 .0174126 .0455671

. margins, dydx(lavgrexp)

Average marginal effects Number of obs = 7150
Model VCE : Robust
Expression : E[math4|x], predict()

dy/dx w.r.t. : lavgrexp

Delta-method
dy/dx  Std. Err. zZ P>|z| [95% Conf. Intervall

Given that these are CRE models, the APEs are obtained by averaging over the unob-
served heterogeneity in the cross-section dimension. In addition, we average over the
time dimension to obtain a single scale factor. It’s crucial to understand the underlying
assumptions and the circumstances in which this device works, as it’s easy to obtain
effects that are actually not identified. For an in-depth treatment of these issues please
refer to Papke and Wooldridge (2008) and Wooldridge (2010a, chap. 18).
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