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Summary The “BCG hypothesis” suggests that the Bacillus Calmette-Guérin
(BCG) vaccine against tuberculosis limits the severity of COVID-19. We exploit the
differential vaccination practices of East Germany and West Germany prior to reunifi-
cation to test this hypothesis. Using a differences in regression discontinuities (RD-DD)
design centred on the end of universal vaccination in the West, we find that differences
in COVID-19 severity across cohorts in the East and West are insignificant or have
the wrong sign. We document a sharp cross-sectional discontinuity in severity of the
disease, which we attribute to limited mobility across the long-gone border and which
disappears when we control for social connectedness. Case and death data after the
end of the first lockdown on April 26 does not display a discontinuity at the former
border, suggesting that mobility (as opposed to BCG vaccination) played a major role
during the initial outbreak.
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1. INTRODUCTION

Since December 2019, the disease caused by the novel coronavirus (COVID-19) has in-
fected over 72 million people worldwide, of whom over 1.6 million have died.1 The pan-
demic has produced an unprecedented decline in global economic activity as countries
repeatedly implement social distancing measures to contain the spread of the virus.

The development of targeted vaccines to combat COVID-19 is occurring at record
speed. While first vaccines, which appear to be safe and effective,2 are now available to
risk groups in some countries, vaccinating large parts of the population in developed and
developing countries is expected to take at least 1-2 years. This lack of a widely avail-
able vaccine has sparked considerable interest in whether some types of vaccines that are
already known to be safe may have positive indirect effects on the spread and severity
of COVID-19 infections. Specifically, there is now a lively controversy over whether the
Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis also partially protects in-
dividuals against COVID-19. Several studies point out that countries with mandatory
BCG vaccination tend to have substantially fewer coronavirus cases and deaths per capita
than countries without mandatory vaccination, and that the intensity of the epidemic
is lower for countries that began vaccinating earlier (Berg et al., 2020; Escobar et al.,

1As of December 14 2020, based on data from coronavirus.jhu.edu.
2The US Food and Drug Administration (FDA) licensed the first COVID-19 vaccine that has completed

phase 3 trials on December 11, 2020.
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2020; Gursel and Gursel, 2020; Hauer et al., 2020; Sharma et al., 2020). Non-specific
or off-target effects of live vaccines are not uncommon and have been documented in a
variety of settings (Kleinnijenhuis et al., 2015; Chumakov et al., 2020). The BCG vac-
cine appears to protect against its target, some forms of tuberculosis, for up to 60 years
(Aronson et al., 2004) but has also been associated with long-term reductions in all-cause
mortality and mortality from respiratory diseases (Rieckmann et al., 2016). Live vaccines
appear to elicit a strong response of the immune system, which subsequently offers broad
protection against unrelated pathogens (Chumakov et al., 2020). Similar ‘trained immu-
nity’ responses against COVID-19 in BCG vaccinated individuals are therefore plausible
(O’Neill and Netea, 2020), but there is a lack of rigorous evidence investigating these
non-specific effects. Clinical trials are taking place across the globe which test the effec-
tiveness of the BCG vaccine against COVID-19.3 These trials are likely to take at least a
year while the virus continues to spread at a rapid pace. The WHO cautions that there
is currently no evidence that the BCG vaccine protects against the novel coronavirus
(Curtis et al., 2020).

In the absence of experimental results, we propose to use the tools of modern applied
econometrics to test the hypothesis that BCG may offer long-run protection against
COVID-19. We use a regression discontinuity differences-in-differences (RD-DD) analy-
sis of severe coronavirus cases to exploit a natural experiment along the former border
between East Germany and West Germany. This border separated the two sides from
1949 until Germany was reunified in October 1990. West Germany phased out a policy
of de facto universal BCG vaccination (which began in the 1950s) for the general popula-
tion starting in 1974, while East Germany strictly enforced a policy of mandatory BCG
neonatal vaccination from 1953 until 1990. Moreover, neonatal vaccination was com-
pletely interrupted in West Germany in 1975 and 1976 when the only licensed vaccine
caused unexpected side effects and had to be withdrawn from the market (Genz, 1977).
Residual BCG vaccination of risk groups ended permanently in reunified Germany in
1998. This gives rise to a natural experiment that creates variation over time and space.
Individuals born shortly after 1974 just to the west of the former border experienced a
sharp drop in BCG coverage relative to those born shortly before 1974, while their peers
just to the east were consistently vaccinated throughout (at rates exceeding 95%).

Our analysis takes advantage of several important features that are present in the
German context. First, there is an internal border sharply dividing different vaccination
regimes for a limited period of time. Second, the German health ministries of each state
report detailed records to the Robert Koch Institute (RKI), which disseminates stan-
dardized data on COVID-19 cases by geographic location and by single year of age. The
latter allows us to compare individuals in close age cohorts who are also close to each
other in physical space, and therefore differ less on unobservable characteristics. This
alleviates the concerns raised by Becker et al. (2020) about cross-sectional comparisons
and discontinuity designs between East and West Germany. While differences in BCG
vaccination rates across space (Hauer et al., 2020) or cohorts have been used in related
studies (de Chaisemartin and de Chaisemartin, 2020; Hamiel et al., 2020), to our knowl-
edge this is the first paper combining geographic and age variation in BCG vaccination

3For example, the BRACE trial in Australia (NCT04327206), the BADAS trial in the United States
(NCT04348370), or the BCG-CORONA trial in the Netherlands (NCT04328441). Clinicaltrials.gov identi-
fiers are provided in parentheses. However, most of these trials are small scale and may lack sufficient
power to provide a definitive answer.
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status for reliable causal inference. A third feature of the German reporting system is
that every test result submitted to the RKI indicates a case definition, allowing us to dis-
tinguish cases with acute respiratory symptoms (including pneumonia), or patients who
have died from COVID-19, from benign cases without acute symptoms. Fourth, areas
of Germany on both sides of the border have been subject to the same state response
to the COVID-19 pandemic and have comparable access to medical services, creating a
high level of homogeneity in pandemic policy. Finally, Germany publishes detailed data
on county-by-county commuter flows, allowing us to investigate a potentially important
factor in the transmission of COVID-19.

Our RD-DD results contradict the BCG hypothesis. We find that individuals born just
to the east of the former border shortly after 1974 are, if anything, more likely to have a
reported case of COVID-19 relative to their peers in the west than individuals born just
to the east of the border shortly before 1974. Our estimates for the potential “effect” of
the BCG vaccine consistently have the wrong sign and typically cannot be distinguished
from zero. We perform covariate balancing tests to rule out that other outcomes, such as
mortality and respiratory hospitalizations, change differentially between East and West
Germany for cohorts born after rather than before 1974. Performing a less restrictive
differences-in-differences (DD) analysis between all of East and West Germany, as well
as between cohorts born before and after 1974, yields similar results. We also obtain com-
parable results when we focus on severe cases only. Analogous RD-DD and DD analyses
in 1990—the other critical date in the history of the BCG vaccine in Germany—deliver
even stronger estimates of the differential effect that run counter to the BCG hypothesis,
although their covariate balancing tests are not as stable. Taken together, these findings
cast serious doubt that the correlations adduced by the literature supporting the BCG
hypothesis capture a causal relationship (Berg et al., 2020; Escobar et al., 2020; Gursel
and Gursel, 2020; Hauer et al., 2020; Sharma et al., 2020) and, instead, support the
findings of studies using temporal differences in BCG vaccination in the same country
(de Chaisemartin and de Chaisemartin, 2020; Hamiel et al., 2020).

Our analysis reveals a puzzle. If we ignore the variation over time, we observe a sharp
discontinuity in COVID-19 cases at the former border separating West and East Ger-
many. There are considerably fewer cases and deaths in the former East. If it is not the
BCG vaccine, then what explains this jump?4 Our solution to this puzzle suggests that
while the virus does not stop at the long-gone border, people who carry the virus still do.
We find that controlling for social connectedness as proxied by cross-county Facebook
connections significantly decreases the discontinuities in COVID-19 cases at the border
and makes them statistically insignificant. This echoes the findings of a recent literature
on border controls and travel restrictions (e.g., Chinazzi et al., 2020; Eckardt et al., 2020).
Going further, we document that long-range commuter flows in Germany are sharply
discontinuous at the former border, which reflects a continued lack of connectedness be-
tween West German and East German counties. We demonstrate that discontinuities in
commuter flows can generate discontinuities in COVID-19 cases at the former border
without any reference to the BCG hypothesis. We simulate a spatial SIR model of viral

4Prominent newspapers in Germany have noticed that there is much lower COVID-19 preva-
lence in the former East than in the West but offer only suggestive explanations (e.g., Die Zeit,
a German weekly, www.zeit.de/2020/13/coronavirus-ausbreitung-osten-westen-faktoren,
or Der Tagesspiegel, a Berlin-based German daily, www.tagesspiegel.de/politik/
mehr-flaeche-mehr-alte-warum-der-osten-weniger-unter-corona-leidet/25796940.html). More-
over, low COVID-19 mortality in Germany as a whole has been the subject of media interest.
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spread across German counties where commuter flows act as a transmission channel (as
in Wesolowski et al., 2017). We show that even within this very stylized framework, we
can obtain a sizable discontinuity in COVID-19 intensity without incorporating anything
relating to vaccination into the model. Moreover, we show that the discontinuities in cases
and severe cases weaken over time. In fact, we do not observe significant discontinuities in
new cases occurring after the initial outbreak in spring. We interpret this as additional
evidence in favor of mobility playing a key role in “seeding” the early distribution of
the outbreak, as opposed to the spread being contingent on innate characteristics of the
population. Finally, we consider evidence for a discontinuity in COVID-19 deaths as a
share of the underlying population. We find no statistically significant evidence that the
pandemic produced a discontinuity in the logarithm of deaths at the former border, no
matter if we consider data until the end of the first wave or until mid-December 2020.

The remainder of the paper is organized as follows. Section 2 describes the county-level
data on cases, covariates, and commuter flows. Section 3 outlines our empirical strategy.
Section 4 presents the balancing tests and main RD-DD results for cases by age-groups.
Section 5 explores mobility as an alternative explanation for the sharp discontinuity in
overall cases, presents results from placebo tests with cases simulated from a county-level
SIR model with mobility, and examines the evidence on deaths rather than cases. Section
6 concludes.

2. DATA

The COVID-19 pandemic in Germany can be characterized by three distinct phases: i)
an initial outbreak in spring which began in late February and lasted about four weeks
into the lockdown on 23 March 2020 until about April 26 2020, ii) a slow resurgence of
coronavirus cases as travel restrictions were lifted over the summer, and iii) a second
wave of infections and mobility restrictions in the winter.5 For most of the analysis, we
focus on the first period between the start of the pandemic in Germany over the peak
with more than 6,000 daily cases until new infections dropped again to less than 2,000
cases per day, but we also investigate new cases and deaths from April 26 2020 until
December 13 2020, the day before Germany imposed another lockdown to confront the
autumn wave of the pandemic.

Our main dependent variable is the logarithm of one plus the number of cumulative
reported COVID-19 cases per million people in a German county (Kreis) as of April 26,
2020. Germany reported a total of 158,047 COVID-19 cases and 8,122 deaths by this
date. We obtain counts of cumulative and new COVID-19 cases and deaths by German
county for every date since January 27 2020 (the start of week 5) from the RKI’s NPGEO
Corona Hub 2020. Figure 1 shows a map of cumulative cases by county as of April 26
2020 (the end of week 17). Given the difficulties in recording asymptomatic cases of
COVID-19, it is all but certain that the case counts we employ in this paper are a lower
bound for COVID-19 cases in Germany. In the period of observation, testing capacity
was high but testing was limited to individuals displaying symptoms, returnees from high
risk countries, and those who have been in contact with confirmed cases. We proceed on
the necessary assumption that undercounting errors do not vary systematically across
age groups and locations.

The RKI also separately reports case data by single-year age groups and week via the

5Figure S.3. provides a time-series of daily cases.
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Figure 1. Spatial distribution of COVID-19 cases in Germany as of April 26 2020. The
map shows the log(1 + cases/million people) in each county. The former border is marked
in red. Darker (lighter) shades of blue indicate more (fewer) COVID-19 cases.

platform SurvStat@RKI 2.0. By federal law, all cases reported to the RKI have to follow a
case definition (Falldefinition).6 This categorization allows us to distinguish severe cases
which have been confirmed by a PCR test and display acute symptoms (about 63% of all
cases)—ranging from respiratory distress over pneumonia to death—from cases which do
not display any clinical symptoms or are entirely asymptomatic (26%), and from cases
whose clinical status is unknown (11%).7 The high share of severe cases in overall cases is
consistent with the notion that the cumulative case count by and large indicates COVID-
19 severity rather than just incidence. We use both overall and severe cases throughout
the analysis. Deaths by single-year age groups and week are not reported by the RKI.

In addition to COVID-19 cases, we compile several other data sources at the county-
by-age level to use in balance tests. We collect data on overall mortality, mortality from
selected infectious diseases, mortality from respiratory diseases, and similar statistics for
hospitalizations in 2016 from the German federal statistical office (via the GENESIS
regional database). We also obtain data on labour force participation, unemployment,
full-time employment, public employment and commuting to work from the full 2017

6For a full description (in German), see www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/
Falldefinition.pdf?__blob=publicationFile.
7Figure S.4. includes a figure of the age distribution of cases and severe cases for the territories of the

former West and East.
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Microcensus (a 1% sample of the German population) at the county-by-age level.8 We also
use the latest available data on commuting flows published by the Federal Employment
Agency from December 2019. The agency regularly releases an origin-destination matrix
of commuting flows across German counties. These flows capture about 33 million jobs.
Approximately 13 million of the jobs are in a different county than the primary tax
residence of the employee. To focus on long-run commuting patterns, we eliminate origin-
destination pairs whose centroids are less than 50 km apart, and for which the rail and
highway network plays a smaller role. Finally, we use data on Facebook connections
between individuals living in different counties, which has been made publicly available by
Facebook for researchers interested in studying the COVID-19 pandemic. The provided
scores can be interpreted as scaled probabilities that two randomly selected Facebook
users from the different counties are Facebook friends (Bailey et al., 2018).

3. EMPIRICAL STRATEGY

Our study exploits discontinuous changes in vaccination policies across the former border
dividing East and West Germany from 1949 until 1990, with a focus on the cessation of
widely recommended BCG vaccination after 1974 in the West.

3.1. Identifying variation

Even though tuberculosis was widespread among the war-ravaged population, Germany
had a non-vaccination policy until the end of World War II and did not join Red Cross-led
vaccination campaigns in the early post-war years. This decision was in part due to the
“Lübeck vaccination disaster” in which 251 infants were vaccinated with a BCG vaccine
contaminated with live tuberculosis bacteria. Almost all children fell ill with tuberculosis
and 72 died, leading the Interior Ministry to reject BCG vaccination as unsafe in 1930
(Loddenkemper and Konietzko, 2018).

BCG policies then diverged quickly when the country was divided. In 1953, the German
Democratic Republic (GDR) introduced mandatory vaccination for a variety of diseases,
including the BCG vaccine against tuberculosis. Enforcement in the GDR was strict.
“From 1954 on, school children who had not yet been vaccinated had to present a letter
of exemption not only from their parents but also from a physician” (Harsch, 2012, p.
420). Vaccinations substantially outstripped newborns in the early 1950s, suggesting that
young adults born before the GDR existed were also vaccinated ex post (Kreuser, 1967).
The policy lasted until the collapse of the GDR in 1990.

The Federal Republic of Germany (FRG) only required mandatory vaccination for
smallpox from 1949 until the end of 1975. The BCG vaccine was highly recommended
but administered on a voluntary basis. In practice, vaccination of newborns was near
universal by the mid-1960s. Due to the decentralized nature of the West German health
care system, the initial roll out of the vaccination policy varied by state in the 1950s.
By 1964, practically all newborns in West Germany were BCG vaccinated shortly after
birth (Kreuser, 1967). In 1974, the policy was changed to vaccinate only children in risk
groups and, in May 1975, the BCG vaccine was temporarily withdrawn from the market
in the West, when a new vaccine compatible with WHO guidelines was discovered to
have unintended side-effects. Neo-natal vaccination practically ceased for two years and

8The Microcensus data is made available for remote or on-site processing by the Research Data Centres
(Forschungsdatenzentrum) of the Federal Statistical Office and the Statistical Offices of the federal states.
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Table 1. Timeline of vaccination policies in both parts of Germany, 1949 until today

Year West Germany (FRG) East Germany (GDR)

1949 First BCG vaccinations
1951-52 Extended program with GDR

manufactured BCG vaccine
1953 BCG vaccine is licensed Mandatory vaccination (with re-

fresher), target rate at least 95%
1955 Recommendation to vaccinate all

newborn children
Mid 1960s Near universal vaccination of new-

borns
Near universal vaccination of new-
borns

1974 National recommendation to only
vaccinate children in risk groups,
some states continue to recommend
universal vaccination of newborns

1975 BCG vaccination temporarily
halted for two years

1983 Further restriction to only those
children that have TB in the family

1988 Vaccine recommended only for chil-
dren that tested negative for tuber-
culin and are risk groups

1990 Reunification, policies of FRG con-
tinue

Reunification, policies of FRG ap-
ply

1998 Vaccination no longer recom-
mended, risk groups are no
longer vaccinated, last states drop
recommendation to vaccinate

Note: Based on Klein et al. (2012), Klein (2013), and various sources cited in the text.

tuberculosis incidence among newborns doubled (Genz, 1977). Voluntary vaccination of
risk groups continued thereafter until 1998 (Robert Koch-Institut, 1976, 1998) but vac-
cination was no longer universal in West Germany from 1975 onward or in reunified
Germany after 1990. Some states continued to recommend universal vaccination until
1998 but with low compliance and confusion among parents about which recommenda-
tions apply (Danner and Qast, 1995). Currently, no BCG vaccine is licensed in Germany.
We summarize these changes in Table 1.

3.2. Regression discontinuity design

Ignoring variation across cohorts, we can estimate the discontinuity between East and
West Germany in COVID-19 intensity, yc, by running a standard geographic regression
discontinuity (RD) design (see e.g. Lalive, 2008; Dell, 2010; Keele and Titiunik, 2015):

yc = α+ βEastc + δ1dc + δ2 (dc ×Eastc) + λs(c) + εc for |dc| < b (3.1)
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where c indexes counties (Kreise), Eastc indicates whether the county was part of East
Germany before reunification, dc is the distance of county c from the former East German
border (it is negative if Eastc = 0 and positive if Eastc = 1), and λs(c) is a fixed effect for
the border segment associated with county c. Border segments are defined by breaking
up the former border into five consecutive segments of about 265 km each.9 We drop
Berlin throughout the analysis, as it was an enclave with its own internal border between
East and West, and focus on the border which used to separate the two larger countries.

The coefficient of interest in this design, β, does not identify the effect of the BCG
vaccine on COVID-19 severity. Instead, it captures a compound treatment effect of dis-
continuous changes in other variables that are related to being born in East Germany
and directly affect COVID-19 transmission. Put simply, East Germany differed from
West Germany in many more ways than BCG vaccination (see e.g., Becker et al., 2020).
We only use β as a reference to gauge the size of the baseline discontinuity for all ages
or for specific cohorts.

To isolate the effect of BCG vaccination on COVID-19 severity, we estimate the dif-
ference in discontinuities at the border for cohorts born just before and just after West
Germany suspended widespread recommendation of the BCG vaccine in 1974. We call
this a regression discontinuity differences-in-differences (RD-DD) design (see e.g., Desh-
pande, 2016), which we estimate using the following specification:

yc,a = αa + βEastc + γEastc ×Treateda + δ1dc + δ2dc ×Eastc+

δ3dc ×Treateda + δ4dc ×Eastc ×Treateda + λs(c),a + εc,a for |dc| < b

(3.2)

where a indexes age groups (pre- and post-vaccination change), Treateda is an indicator
for the age group for which the policy experiment created no differential in vaccination
status across the border (here it is the age group born before the vaccination policy
change), and the intercept and the border segment fixed effects are allowed to vary by
age group. The rest of the notation is the same as before. The coefficient of interest, γ,
delivers an estimate of the difference in discontinuities across cohorts.

The assumption needed for this specification to recover a causal effect of BCG vaccina-
tion on the outcome variable is that any discontinuities across the former border—other
than the effect of the vaccine—are constant across cohorts born shortly before and shortly
after the change in vaccination regime. As it is not apparent that anything else happened
in 1974 that would affect newborns differently in East and West Germany (e.g. no other
vaccines were introduced or withdrawn) we view this as a plausible assumption.10 More-
over, we can test this assumption by looking at other outcomes for successive cohorts
around 1974.

Equation (3.2) can also be viewed as nesting a standard differences-in-differences spec-
ification, in which we compare outcomes in all of East Germany with those in all of West
Germany, and for cohorts born just before or just after 1974. In the framework above,
such a specification would set the bandwidth b equal to infinity, and the coefficients on
the distance terms and the border segment fixed effects to zero.

9Another way to define border segments would have been by using pairs of bordering states. However,
this division produces unevenly sized clusters, with some states sharing a border at only one pair of
counties.
10The closest policy change is the near synchronous end of universal smallpox vaccination in 1983 in
West Germany and 1982 in East Germany (Klein et al., 2012; Klein, 2013).
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3.3. Optimal bandwidth selection and bias correction

An integral part of regression discontinuity analysis is choosing an appropriate band-
width for estimation and inference. For the RD specifications, we follow Calonico et al.
(2020) and present our baseline estimates using inference-optimal bandwidth choices that
minimize the coverage error rate (CER) of the robust bias-corrected confidence interval.
We also report estimates using bandwidths that minimize the mean squared error (MSE)
of the RD point estimate (Calonico et al., 2014) which have become the de facto standard
in the literature. Additionally, we present results for two fixed bandwidths (30 km and
60 km), which are easy to interpret and bracket most of the optimal bandwidths selected
by the two data-driven procedures.

Calonico et al. (2014) show that all RD estimates have finite-sample bias that may
be separately estimated (using an undersmoothed bandwidth) and corrected for, with
corresponding corrections to asymptotic standard errors to take into account additional
variability from the bias correction. We bias-correct all RD estimates and present robust
confidence intervals throughout our RD analysis. Rules for optimal bandwidth selection
and bias correction have not yet been developed for RD-DD designs. We proceed by
calculating CER-minimizing bandwidths for each group in the RD-DD and then use
these bandwidths directly in equation (3.2). The CER-bandwidths are undersmoothed
relative to their MSE-optimal counterpart, allowing us to use conventional confidence
intervals without bias-correction in the RD-DD design.

3.4. Bootstrap inference for few clusters

Germany is a federal country in which most public health policy, including BCG vacci-
nation, COVID-19 containment measures, and the reporting of cases and deaths through
local health authorities, is the responsibility of the states (Bundesländer). While this is
the natural level at which the errors should be clustered, there are only 16 states in Ger-
many (and only six in former East Germany). Relatively narrow bandwidths will then
select a subset of those states, leading to the concern that asymptotic approximations
for standard errors clustered on states may be inaccurate.

We address this concern by estimating wild cluster bootstrap (WCB) confidence in-
tervals (Cameron et al., 2008). MacKinnon and Webb (2017) show that the WCB can
fail in situations where there are only few treated clusters. Our setting, however, is one
where the WCB typically performs well (as the number of clusters is not too small and
about half of the units are treated). For the RD-DD design, we report conventional 95%
confidence intervals obtained from bootstrap DGPs where the null of no difference in
discontinuities (γ = 0) has been imposed.

For the RD results, we use a variant of the wild bootstrap for robust bias-corrected
confidence intervals proposed by Bartalotti et al. (2017), which uses second-order local
polynomials to estimate the bias of the RD estimator and confidence interval of the bias-
corrected RD estimator. Our version accommodates clustering (as in He and Bartalotti,
2020), additional covariates (Calonico et al., 2019), Webb’s six-point distribution11 as
wild weights (Webb, 2014), and parallel computation. We present WCB versions of the

11Wild bootstrap schemes typically use 2-point distributions as weights for the original residuals. This
implies that there are only 2G unique samples, where G is the number of groups (clusters). Some of our
specifications are based on as few as 8 clusters or 256 unique samples. A 6-point distribution expands
the universe of unique samples and performs well in simulations with few clusters (Webb, 2014).
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95% bias-corrected confidence intervals. As with the RD-DD design, the procedure takes
the bandwidth choices as given, which we either fix or calculate prior to the bootstrap
using asymptotic data-driven methods for the same specification and sampling scheme.

4. RESULTS

4.1. Balancing tests

We start by presenting evidence that several other outcomes for cohorts born just before
and just after 1974 are similar, suggesting that the RD-DD design is not capturing the ef-
fects of differences between these cohorts unrelated to BCG vaccination. Table 3 presents
these balancing tests. Unfortunately, we do not have data on alternative outcomes by
single year of age. However, we have mortality and hospitalization rates in 5-year age
bins derived from administrative data in 2016 and we construct labour market indicators,
also in 5-year age bins, from the 2017 Microcensus.12

Table 2 presents the coefficient γ from equation 3.2 when the logarithms of unem-
ployment rates, labor force participation rates or other labor market indicators are used
as dependent variables in the RD-DD design. Since we observe the reported birth year
of each individual in the 2017 Microcensus, we construct exact 5- and 10-year age bins
around birth years in 1974 and 1990, for which we perform the balancing tests. Columns
1 and 2 present balancing tests for the 1974 policy change, whereas columns 3 and 4
present these tests for reunification in 1990. Table 3 presents the coefficient γ from equa-
tion 3.2 when the logarithms of mortality or hospitalization rates are used as dependent
variables in the RD-DD design. Unlike the Microcensus data, the mortality and hospital-
ization data comes in predefined 5-year age bins, preventing us from building these bins
around the policy change years. Instead, we omit the 40–44 year old group (since they
were born between 1972 and 1976) as we cannot classify them neatly as treated or un-
treated relative to the 1974 vaccination suspension in the West. In column 1 we take the
5-year age group immediately older than the omitted group as the “treated” group and
the 5-year age group immediately younger than the omitted group as the “untreated”
group. For example, in the case of mortality this compares 45–49 year olds to those that
are 35–39. In column 2 we take the two 5-year age groups immediately older than the
omitted group as the “treated group” and construct the “untreated group” symmetri-
cally (e.g., 45–54 year olds versus 30–39 year olds). All other cohorts are omitted from the
analysis. Columns 3 and 4 present analogous balance tests for the cohorts born around
1990, where the age cohorts for analysis are chosen similarly.

For each balance test, we present the RD-DD estimate, its clustered standard error
based on standard asymptotics (in parentheses), a 95% confidence interval based on the
cluster wild bootstrap, and the bandwidths used for the treated and untreated groups,
respectively. We conduct the RD-DD analysis using CER-optimal bandwidths obtained
separately for the treated and untreated age groups. Across both tables 2 and 3, all
labour market and health outcomes appear to be balanced for the cohorts born around
1974, regardless of whether we consider standard asymptotic inference or wild bootstrap-
based confidence intervals. For example, Column 1 of Panel A in Table 2 shows that the
labour force participation rate is 0.03 log points higher for those just to the East of the

12While it is technically possible to construct smaller age groups for every county using the Microcensus,
the resulting summary statistics are based on too few observations to pass the confidentiality tests
required by Research Data Centres.
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Table 2. Balance tests: Microcensus 2017

Policy change
1974 West ends universal 1990 East ends mandatory

Age interval around policy change
5 years 10 years 5 years 10 years

(1) (2) (3) (4)

Panel A. Log labour force participation

East×Treated 0.03 (0.03) 0.03 (0.02) -0.33** (0.12) -0.14 (0.14)

Wild 95% CI [-0.09, 0.13] [-0.04, 0.12] [-0.56, 0.46] [-0.55, 0.90]
BWs (hNT , hT ) 56.2, 32.5 63.1, 36.2 27.2, 42.6 37.4, 33.6

Panel B. Log unemployed

East×Treated 0.13 (0.29) -0.17 (0.19) -0.58** (0.19) 0.61 (0.53)

Wild 95% CI [-0.33, 1.42] [-1.08, 0.49] [-1.12, 0.14] [-1.23, 2.45]
BWs (hNT , hT ) 40.0, 34.0 61.1, 35.2 67.8, 42.1 37.6, 42.4

Panel C. Log full time employment

East×Treated 0.03 (0.08) -0.01 (0.05) -0.01 (0.05) 0.05 (0.07)

Wild 95% CI [-0.43, 0.45] [-0.28, 0.22] [-0.19, 0.23] [-0.21, 0.29]
BWs (hNT , hT ) 32.3, 67.3 31.0, 44.6 57.1, 46.4 55.7, 45.4

Panel D. Log public employment

East×Treated -0.16 (0.27) -0.18 (0.17) -0.91* (0.46) -0.78** (0.26)

Wild 95% CI [-1.72, 0.82] [-0.57, 0.80] [-2.58, 1.22] [-2.16, 0.58]
BWs (hNT , hT ) 30.9, 38.5 32.1, 48.0 32.4, 30.9 32.7, 48.5

Panel E. Log commuters

East×Treated -0.02 (0.14) -0.12 (0.15) -0.54** (0.21) -0.36 (0.24)

Wild 95% CI [-0.86, 0.96] [-0.85, 0.99] [-1.32, 0.71] [-1.14, 0.73]
BWs (hNT , hT ) 49.6, 28.7 45.1, 29.9 34.6, 45.4 44.0, 39.0

Note: All coefficient estimates are based on a RD-DD specification with a CER-optimal bandwidth
(Calonico et al., 2020) computed separately for the treated (hT ) and untreated cohorts (hNT ). Pilot
bandwidths for the bias correction are not reported. The number of observations differs per cohort,
depending on the bandwidth. Conventional standard errors clustered on states level are reported in
parentheses. The wild cluster bootstrap confidence intervals (Cameron et al., 2008) are based on 99,999
replications where the null of no difference in discontinuities has been imposed.

former border compared to those located just to the West of the former border in the
cohort born 5 years before 1974, relative to the same East-West differential for cohorts
born after 1974. The difference-in-discontinuities is insignificantly different from zero
using either asymptotic or finite-sample inference. The bounds on this difference under
finite-sample inference range from -0.09 to 0.12 log points, suggesting that this difference-
in-discontinuities is estimated as a reasonably precise zero. Some of the estimates tend to
be large in magnitude and be accompanied by even larger standard errors. However, the
fact that they are all insignificant under exact finite-sample inference reassures us that
we are not getting covariate balance because the asymptotic formulas for the standard
errors are invalid. For cohorts born around 1990, the labour market covariates appear to
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Table 3. Balance tests: Health status 2016

Policy change
1974 West ends universal 1990 East ends mandatory

Age interval around policy change
5 years 10 years 5 years 10 years

(1) (2) (3) (4)

Panel A. Log all-cause mortality

East×Treated -0.22 (0.15) 0.03 (0.19) -0.61 (0.95) -1.70** (0.54)

Wild 95% CI [-0.80, 0.40] [-0.93, 0.80] [-2.68, 5.69] [-2.68, 0.85]
BWs (hNT , hT ) 53.0, 40.4 31.2, 35.5 53.9, 17.9 31.2, 31.2

Panel B. Log mortality from infectious diseases

East×Treated -1.00 (1.21) -0.57 (1.05) – –

Wild 95% CI [-6.85, 1.38] [-6.28, 2.51]
BWs (hNT , hT ) 43.3, 40.8 34.6, 47.3

Panel C. Log mortality from respiratory diseases

East×Treated -1.20 (1.77) 0.47 (1.54) 1.02 (1.06) 2.11 (1.32)

Wild 95% CI [-9.19, 2.06] [-8.33, 5.60] [-0.35, 7.40] [0.35, 10.32]
BWs (hNT , hT ) 47.6, 47.0 50.9, 35.2 39.3, 71.0 37.9, 50.9

Panel D. Log hospitalizations

East×Treated 0.07 (0.08) 0.08 (0.08) -0.18*** (0.04) -0.18*** (0.04)

Wild 95% CI [-0.59, 0.17] [-0.56, 0.20] [-0.38, -0.03] [-0.36, -0.12]
BWs (hNT , hT ) 46.7, 30.3 41.4, 28.7 44.9, 41.5 40.3, 41.4

Panel E. Log hospitalizations for infectious diseases

East×Treated -0.12 (0.12) 0.04 (0.04) 0.17 (0.10) -0.23* (0.12)

Wild 95% CI [-0.67, 0.61] [-0.01, 0.22] [-0.21, 0.43] [-1.05, -0.06]
BWs (hNT , hT ) 28.8, 34.5 34.8, 41.9 42.3, 44.5 47.2, 34.8

Panel F. Log hospitalizations for respiratory diseases

East×Treated 0.17 (0.12) 0.15 (0.09) -0.24** (0.09) -0.06 (0.05)

Wild 95% CI [-0.50, 0.89] [-0.03, 0.85] [-0.58, 0.44] [-0.26, 0.22]
BWs (hNT , hT ) 23.2, 41.3 26.5, 40.1 37.4, 28.5 48.0, 26.5

Note: All coefficient estimates are based on a RD-DD specification with a CER-optimal bandwidth
(Calonico et al., 2020) computed separately for the treated (hT ) and untreated cohorts (hNT ). Pilot
bandwidths for the bias correction are not reported. The number of observations differs per cohort,
depending on the bandwidth. Conventional standard errors clustered on states level are reported in
parentheses. The wild cluster bootstrap confidence intervals (Cameron et al., 2008) are based on 99,999
replications where the null of no difference in discontinuities has been imposed.

be balanced when finite sample inference is used (although four out of ten tests reject at
5% when asymptotic inference is used).13 However the health covariates are not balanced,

13Tables S.1. and S.2. in the Online Supplement show that the results are qualitatively similar when we
use MSE-optimal bandwidths for the placebo checks.
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with 4 out of 10 tests rejecting at 5% using the wild bootstrap inference (and a different
set of 4 out of 10 rejecting when asymptotic formulas are used for inference). This may
be because we are dealing with a much younger population in which mortality and
hospitalization events are even rarer or because political changes in the 1990s had long-
run consequences as the fetal origins hypothesis may suggest (Almond and Currie, 2011).
For this reason, we focus on the 1974 experiment and present results using the end of
mandatory BCG vaccination in the East in 1990 only as a robustness check.

4.2. Main results

We start by examining the reference RD specification for overall cases and symptomatic
cases, across all ages and for the constituent cohorts of the RD-DD design.

Figure 2a) presents regression discontinuity plots of log(1+cases/million) by distance
to the border of the former GDR, with positive (negative) distances indicating locations
in former East Germany (West Germany). We use the methods of Calonico et al. (2014) to
compute an optimal number of quantile-spaced bins and then estimate a local polynomial
on each side using a fixed bandwidth of 30 km. We find that the local linear estimates are
discontinuous at zero, falling from west to east. Otherwise, the conditional expectation
function exhibits no apparent discontinuities. We observe a drop in cases per million of
a little under 1 log point as one crosses the border from west to east. Hence, there are
more than half as many cases per capita in a former East German county relative to
a West German county just across the border. Figure 2b) presents similar local linear
estimates for the discontinuity in log symptomatic cases. Here too, crossing the border
from west to east entails a nearly 1 log point decrease in the number of severe cases per
million residents. These correlations mirror those documented in the recent literature
which typically finds a strong association between BCG status and COVID-19 severity
in cross-sectional analyses. While remarkable, these apparent jumps are not causal, as
many other confounders also change discontinuously at the former border.

Panels c) to f) of Figure 2 present the corresponding local linear estimates for the 35–44
age group and the 46–55 age group. These correspond to the cohorts born in the 10 years
following and the 10 years preceding the 1974 discontinuation of the recommendation to
give the BCG vaccine to most newborns. The jump at the border is present for the older
group and is quantitatively similar to the discontinuity for the younger group. As the
BCG hypothesis would have predicted little if any discontinuity for the older group (as
members of that cohort in both the East and the West received the vaccine), this exercise
already provides evidence against the BCG hypothesis. Importantly, using symptomatic
cases instead of all reported cases as the COVID-19 intensity measure hardly changes the
qualitative conclusion that the change at the border is similar across the two age groups.

Table 4 formalizes the intuition of the cohort-wise figures and presents estimates of the
coefficient γ from specification 3.2 for various definitions of the “treated” and “untreated”
groups and outcomes. We start with the 10-year cohorts underlying Figure 2, then present
5-year cohorts following Table 3 and then consider a narrow age group of two years
before and after the 1974 policy experiment (46–47 versus 43–44 year olds). We present
our baseline results in the first column by computing difference-in-difference regressions
within samples defined by CER-optimal bandwidths estimated separately for the treated
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(a) Cases, all ages
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(b) Severe cases, all ages
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(c) Cases, ages 35 to 44
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(d) Severe cases, ages 35 to 44
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(e) Cases, ages 46 to 55
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(f) Severe cases, ages 46 to 55
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Figure 2. Discontinuities in log(1+cases/million) at the former border estimated using
an optimal number of quantile-spaced bins and a local polynomial on each side with a
fixed bandwidth of 30 km.
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and the untreated group.14 If the discontinuity in COVID-19 cases is caused by the
direct long-term effect of BCG vaccination, then we would expect that the discontinuity
among individuals born just before 1974 should be smaller than the discontinuity among
people born just after 1974. The end of the recommendation to vaccinate in the West
together with the temporary cessation would have lowered vaccinations, whereas the East
continued mandatory vaccination with no change in 1974. As the sign of the discontinuity
in COVID-19 intensity across the border is negative, we would expect the coefficient γ,
the additional effect on the treated group (those born before 1974), to be positive as it
should cancel out the average discontinuity for the population as a whole, or at least
counter some portion of the compound treatment effect at the former border.

Contrary to the BCG hypothesis, the coefficient γ for overall cases is typically neg-
ative. In two instances, it is positive but not different from zero under either standard
asymptotic or wild bootstrap inference (Panel A of Table 4). For example, Column 2 of
Panel A suggests that the cohorts in the East born in the 8 years before 1974 had -0.49
log points (-39%) fewer COVID-19 cases than their counterparts in the West, when the
differential between the East and West cohorts born in the 8 years after 1974 is used as
a comparison. When γ is positive (as in column 4 of Panel A), it is slightly more than
half the magnitude of the baseline discontinuity shown in Figure 2a) and statistically
insignificant, although both the asymptotic and the wild bootstrap confidence intervals
contain the large positive estimates that one would expect if the BCG hypothesis were
true. This appears to be a function of the size of the age bins (and noise in county-by-age
case data). With smaller age groups and fewer underlying cases, the confidence intervals
on the coefficient γ with age windows of 4 and 2 years (columns 4 and 5) become large
and contain the magnitude of the population discontinuity estimate. However, several
estimates for wider age groups have modest standard errors that comfortably exclude
an estimate of equal or greater magnitude and opposite sign from the population dis-
continuity. We also present the simple differences-in-differences estimates for the 1974
experiment, in which the whole of West Germany is used as a control for the whole of
East Germany (Panel B). We now obtain nonpositive estimates of the coefficient γ for
four of the five ways of structuring the treated group, while the lone positive estimate
(in column 4) has a large standard error. For all but the narrowest age group definition,
we can reject that the policy experiment fully offsets the population discontinuity esti-
mate, while several estimates are centered relatively narrowly around zero (columns 3
and 4). In Panels C and D of Table 4 we exploit the unique data reported by the RKI
and repeat our analysis using symptomatic cases only. Once again, our estimates of γ are
negative, or positive but insignificantly different from zero in all cases when wild boot-
strap confidence intervals are used, and in all but one case when standard inference is
used, inconsistent with the BCG hypothesis. However, our confidence intervals are wide
and typically include the population RD estimate.

As a robustness check we examine a second change to the BCG vaccination regime
in Germany: the end of mandatory vaccination in the East following reunification in
1990. Now, the “treated” group is the post-1990 cohort because the end of mandatory
vaccination in the East reduced the differential in vaccination rates between the East
and the West for individuals born just after 1990 relative to individuals born just before.
Panels A through D of Table 5 show that all the corresponding estimates but one are

14Table S.3. in the Online Supplement shows that we obtain similar results when MSE-optimal band-
widths are used.
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consistently negative, and none is positive and significant under either asymptotic or
finite sample inference. If anything, these estimates disagree even more with the BCG
hypothesis than the 1974 experiment but have to be interpreted with caution given the
covariate imbalance documented earlier.

5. ALTERNATIVE EXPLANATIONS FOR THE DISCONTINUITY

5.1. Social connectedness

If the BCG vaccine does not explain the East-West differential in COVID-19 cases, then
what does? We investigate a broad set of additional variables to assess whether they may
explain the discontinuity in overall COVID-19 cases and severity across the border. Re-
gardless of the bandwidth used, log population density, log disposable income, the share
of the population aged 45–64 and the share older than 64, the date that the first COVID-
19 case was recorded, and age-adjusted mortality from all causes, infectious diseases and
respiratory diseases all show discontinuities at the former border.15 This echoes the pre-
division East-West differences documented elsewhere (e.g. Becker et al., 2020) and is
precisely why we do not consider the overall discontinuity as a causal estimate, since it
may be driven by some of these variables. It is well known that counties just to the east of
the border have lower population density, lower consumption, and an older population.
We also find that they recorded their first COVID-19 case later and have higher age-
adjusted mortality rates than counties just to the west of the border. Nevertheless, these
explanations cannot fully account for the East-West difference in COVID-19 intensity.
The discontinuity in cases per capita remains after including these variables. The raw
correlations within the East and West further suggest that the geography of the early
outbreak in Germany was very particular. The virus first spread among affluent and less
vulnerable populations.16

In Table 6 we show how another variable—social connectedness to East Germany,
as proxied by the ratio of Facebook connections to East Germany to overall Facebook
connections—does explain the discontinuity in COVID-19 cases across the former bor-
der.17 Panels A and B reproduce the benchmark RD specification for the CER-optimal
bandwidth. We also include results for an MSE-optimal bandwidth and for fixed band-
widths of 30 km and 60 km, which are close to the largest and smallest among the CER-
optimal and MSE-optimal bandwidths. As before, we also present wild cluster bootstrap
confidence intervals (now following Bartalotti et al., 2017). Regardless of the choice of
bandwidth and of the use of standard or finite-sample inference procedures, there is a
strong and statistically significant decline in both total and symptomatic cases per million
as one crosses the former border from west to east, typically on the order of 1 log point.
Panel C shows that the fraction of Facebook connections of individuals in the county to
individuals in East Germany discontinuously increases at the old East Germany border
by at least 0.3, or 30 percentage points. Finally, Panel D shows that, once the fraction of

15Tables S.4. and S.5. in the Online Supplement report the corresponding results.
16See RD estimates with controls in Supplementary Table S.6. and the bivariate OLS regressions in
Table S.7.
17The precise measure that we use for each county is the ratio of the sum of the Social Connectedness
Index between that county and all East German counties and the sum of the Social Connectedness Index
between that county and all other German counties. Connections within the county itself are excluded
from the computation.
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Facebook connections to East Germany is controlled for, the discontinuity in log severe
cases per million at the border ceases to be statistically significant and declines in mag-
nitude substantially. For example, using the CER-optimal bandwidth, the discontinuity
declines from a statistically significant -0.97 log points to a statistically insignificant -
0.23 log points. Therefore, the discontinuity in COVID-19 cases at the former border is
statistically explained by social connectedness.

5.2. Long-distance commuting

Mobility is a key driver of the spread of COVID-19 in Germany and across the world
(Dehning et al., 2020; Hsiang et al., 2020). Hence, a likely explanation for the discontinu-
ity at the former border are Germany’s regional commuting patterns. Next, we show that
long-distance commuter networks (between counties that are more than 50 km apart) are
also discontinuous across the former border, and that this discontinuity alone can give
rise to a discontinuous distribution in COVID-19 cases.

We examine the role played by mobility in Table 6. If flows from the West usually
terminate in the West and flows from the East usually terminate in the East, then
cross-border transmission of the virus could be relatively slow.18 As the epidemic started
in the West, it will have had a harder time spreading eastward. The eastward spread
was then further interrupted by the nation-wide lock-down on March 22 2020. Panel
A shows that there is a stark and statistically significant discontinuity in long-distance
commuter flows across the former border, which is robust to different bandwidth selection
procedures. In particular, border counties on the eastern side are considerably less likely
to receive commuter flows from a West German county than counties on the western
side. Although commuting over long distances is very common in Germany, decades
of partition meant that its infrastructure was re-oriented to connect counties within
the West or East (Santamaria, 2020), with lasting effects on the spatial equilibrium in
Germany.

We now simulate the epidemic in each county using a canonical SIR model with mo-
bility flows (Bjørnstad and Grenfell, 2008; Wesolowski et al., 2017). This allows us to
demonstrate that mobility patterns and the geography of the initial outbreaks can create
a counterfactual discontinuity just like the one we observe in the data. In the model, we
allow infections to spread along commuting patterns starting from the distribution of
COVID-19 cases on February 29 2020 and use the approximate epidemiological charac-
teristics of the outbreak in Germany (e.g., an R0 of 2.5). We use the observed commuting
flows from December 2019 together with county population data to proxy for actual mo-
bility around the time of the outbreak. We simulate the model for 60 periods (days) but
stop all commuting flows after 22 days to reflect the nation-wide shutdown. We do not
explicitly model social distancing or other local containment measures, apart from the
lack of commuting, which implies that the simulation overpredicts total cases.19

Panel B in Table 7 shows that the number of cases per million also discontinuously
declines in the simulated data as one crosses from west to east over the former bor-
der. With about -0.82 log points at the CER-optimal bandwidth, the discontinuity is a
little over 70% of the discontinuity for observed cases (in Panel A of Table 6). The dis-

18Figure S.1. shows that few counties have flows across the former East-West border of more than one
thousand people. The only major destination in former East Germany is Berlin.
19Details of the simulation can be found in Online Appendix S1.
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Table 6. Regression discontinuities in cases and social connectedness

The bandwidth is
CER opt. MSE opt. 30 km 60 km

Panel A. Log(1+Cases/Million)

East -1.11*** (0.36) -0.76*** (0.25) -1.74*** (0.29) -1.27*** (0.29)

Wild 95% CI [-1.6, -0.63] [-1.19, -0.35] [-2.23, -1.3] [-1.75, -0.79]
BWs (h, b) 44.4, 106.4 50.9, 106.4 30, 30 60, 60

Panel B. Log(1+Severe Cases/Million)

East -0.97*** (0.28) -1.04*** (0.38) -1.12*** (0.28) -1.07*** (0.37)

Wild 95% CI [-1.44, -0.5] [-1.64, -0.44] [-1.59, -0.66] [-1.69, -0.47]
BWs (h, b) 36.6, 95.2 41.9, 95.2 30, 30 60, 60

Panel C. Fraction of Facebook Connections with East Germany (FFC)

East 0.33*** (0.07) 0.31*** (0.06) 0.31*** (0.11) 0.3*** (0.04)

Wild 95% CI [0.22, 0.44] [0.21, 0.4] [0.13, 0.49] [0.24, 0.36]
BWs (h, b) 18, 56.2 20.7, 56.2 30, 30 60, 60

Panel D. Log(1+Severe Cases/Million), Controlling for FFC

East -0.23 (0.3) -0.24 (0.26) -0.38 (0.4) -0.31 (0.38)

Wild 95% CI [-0.71, 0.26] [-0.64, 0.22] [-1.01, 0.24] [-0.92, 0.29]
BWs (h, b) 24.9, 82.6 28.5, 82.6 30, 30 60, 60

Note: All coefficient estimates are bias-corrected (Calonico et al., 2014). The RD bandwidths for the
point estimate (h) and bias corrections (b) are indicated in each column. CER and MSE optimal band-
widths use the selection rules developed in Calonico et al. (2020). Robust standard errors clustered on
states are reported in parentheses. The Wild 95% confidence intervals use a cluster variant of the itera-
tive bootstrap proposed by Bartalotti et al. (2017) with 99,999 replications for each bias correction and
1,000 replications to obtain the empirical distribution of the bias-corrected estimator.

continuity in simulated cases is statistically significantly different from zero under both
asymptotic and finite-sample inference. Our simulation constructs a situation that shares
some essential features of the data, and that explains the discontinuously lower COVID-
19 prevalence across the border from East to West without any reference to the BCG
hypothesis. On the other hand, our approach cannot exclude other alternative explana-
tions, and officially registered commuter flows likely do not represent person-to-person
movement across Germany perfectly.

5.3. The discontinuity after the initial outbreak

An implication of the hypothesis that discontinuities in mobility rather than of BCG
vaccination explain the jump in COVID-19 intensity is that the discontinuity in cases
should weaken over time. If BCG vaccination has a protective effect, this effect should
manifest itself in both early and later stages of the pandemic. If mobility matters, once
the virus was introduced everywhere, individuals in East Germany should transmit the
virus to others in the East at similar rates to those in the West (especially after the
lockdown was relaxed in May and June). In Panels C and D of Table 7 we present es-
timates of the discontinuity at the former border for log total reported cases and log
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Table 7. Regression discontinuities in commuting, simulated cases, cases and deaths

The bandwidth is
CER opt. MSE opt. 30 km 60 km

Panel A. Fraction of Incoming Flows from West Germany (WGF)

East -0.42*** (0.06) -0.38*** (0.07) -0.55*** (0.17) -0.45*** (0.08)

Wild 95% CI [-0.52, -0.32] [-0.48, -0.27] [-0.81, -0.27] [-0.59, -0.3]
BWs (h, b) 44.6, 101.4 51.1, 101.4 30, 30 60, 60

Panel B. Log(1+Simulated Cases/Million)

East -0.82*** (0.22) -0.78*** (0.16) -2.7** (1.26) -1.38*** (0.5)

Wild 95% CI [-1.16, -0.49] [-1.03, -0.5] [-4.6, -0.81] [-2.15, -0.62]
BWs (h, b) 55.9, 123.3 64, 123.3 30, 30 60, 60

Panel C. Log(1+New Cases/Million)

East 0 (0.16) 0.04 (0.13) 0.2 (0.23) 0.15 (0.22)

Wild 95% CI [-0.31, 0.29] [-0.19, 0.25] [-0.16, 0.55] [-0.23, 0.53]
BWs (h, b) 75.8, 156.8 86.7, 156.8 30, 30 60, 60

Panel D. Log(1+New Severe Cases/Million)

East -0.09 (0.2) -0.08 (0.25) -0.61 (0.7) -0.23 (0.26)

Wild 95% CI [-0.4, 0.28] [-0.51, 0.37] [-1.75, 0.56] [-0.67, 0.21]
BWs (h, b) 39.9, 87.2 45.7, 87.2 30, 30 60, 60

Panel E. Log(1+Deaths/Million)

East -1.07 (0.95) -0.51 (0.65) 0.47 (1.28) -0.48 (1.04)

Wild 95% CI [-2.68, 0.55] [-1.59, 0.55] [-1.65, 2.53] [-2.15, 1.17]
BWs (h, b) 26.9, 91.5 30.8, 91.5 30, 30 60, 60

Panel F. Log(1+New Deaths/Million)

East 0.01 (0.15) 0.21 (0.19) 1.09 (0.83) 0.37 (0.43)

Wild 95% CI [-0.24, 0.27] [-0.12, 0.58] [-0.21, 2.41] [-0.34, 1.03]
BWs (h, b) 37.9, 113.7 43.4, 113.7 30, 30 60, 60

Note: All coefficient estimates are bias-corrected (Calonico et al., 2014). The RD bandwidths for the
point estimate (h) and bias corrections (b) are indicated in each column. CER and MSE optimal band-
widths use the selection rules developed in Calonico et al. (2020). Robust standard errors clustered on
states are reported in parentheses. The Wild 95% confidence intervals use a cluster variant of the itera-
tive bootstrap proposed by Bartalotti et al. (2017) with 99,999 replications for each bias correction and
1,000 replications to obtain the empirical distribution of the bias-corrected estimator.

total reported systematic cases per million between April 27 and December 13 (shortly
before Germany announced a new lockdown in response to the autumn wave of COVID-
19 in Europe). The RKI reported 1,178,997 new cases over this period. Estimates of the
discontinuity in new cases are positive and statistically insignificant, with the wild boot-
strap 95% confidence intervals rejecting estimates less than -0.31 regardless of bandwidth
choice. For new symptomatic cases, the discontinuity estimates are negative but small
in magnitude at the CER-optimal bandwidth, and statistically insignificant regardless
of the inference procedure for all bandwidth choices. Whatever was responsible for the
initial discontinuous drop in COVID-19 cases in East relative to West Germany appears
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to have been particular to the first wave of COVID-19 infections—another finding which
is inconsistent with the BCG hypothesis.

5.4. Evidence on death rates

So far we have relied on cases or symptomatic cases, rather than deaths, as our main
measures of COVID-19 intensity. This choice is in part due to these measures being
available by single year of age for each county. COVID-19 deaths are available only in
large, aggregated categories at the county level, which are not amenable to the RD-
DD analysis we carry out in this article. Nevertheless, it could be argued that BCG
vaccination only helps to avoid the worst outcomes associated with contracting the novel
coronavirus.

We consider discontinuities in COVID-19 related deaths per million in panel E of
Table 7. We do not find statistically significant discontinuities in deaths per million as
of April 26 2020 at any of the optimal or fixed bandwidths. The point estimates tend
to be negative but have large asymptotic and finite-sample confidence intervals. Panel
F presents the corresponding estimates for the period between April 27 and December
13. Now the estimated discontinuities are positive and insignificant. In fact, at the CER-
optimal bandwidth, we obtain an estimate very close to zero with a relatively tight 95%
wild bootstrap confidence interval, ruling out more substantial East-West discontinuities
below -21%. Therefore, it does not appear that COVID-19 related deaths as a fraction of
the population are discontinuously lower in the East than in the West, which also runs
counter to the BCG hypothesis.

To summarize, our RD evidence shows that the discontinuity in (severe) cases per
capita is fragile to inclusion of connectivity metrics like Facebook connectedness, that
simulated case data with no reference to the border exhibits a similar discontinuity, and
that case and death data after the end of the first lockdown on April 26 does not display a
discontinuity at the former border. These facts along with our analysis of discontinuities
in cases by cohort leads us to conclude that differential BCG vaccine coverage does not
play an important role in explaining the geography of the outbreak in Germany.

6. CONCLUSION

We use variation in vaccination policy across the former East and West Germany to
test whether the BCG vaccine offers protection against COVID-19. We identify patterns
in the data that are inconsistent with the hypothesis that the BCG vaccine limits the
spread or the severity of COVID-19. Instead, a more plausible explanation for the stark
discontinuity in COVID-19 cases observed at the border is the continued presence of
limits to mobility and interpersonal connectedness between the former East and West.
These limits, coupled with the epidemic beginning in the West, decreased early COVID-
19 exposure in the East.

An important limitation that our paper shares with the nonexperimental literature on
the BCG hypothesis is that it looks only at whether or not there is a long-run effect of the
BCG vaccine (decades after it was administered). We consider this broad version of the
hypothesis to be of first-order importance. However, well-documented protective effects of
the BCG vaccine regarding other viral infections, such as yellow fever (Arts et al., 2018),
arise from a trained response of the innate immune system which typically occurs within
one to twelve months after the vaccine has been administered (Kleinnijenhuis et al., 2015;
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Covián et al., 2019; Chumakov et al., 2020). Hence, we cannot rule out that the vaccine
might have a short-run effect which could offer some protection to risk groups.

Our results may be of interest as decisions are made on allocating resources to various
ways of fighting COVID-19. The BCG vaccine is already in low supply (Guallar-Garrido
and Julián, 2020) and is an important tool in the fight against tuberculosis—a disease
which killed 1.5 million people in 2018 alone. Efforts to combat COVID-19 are already
interrupting routine vaccination and detection efforts, which is projected to lead to a
steep rise in fatalities from tuberculosis and other infectious diseases (Nature, 2020).
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S1. SIR MODEL WITH COMMUTER FLOWS

We simulate a SIR model with multiple locations and exogenous migration flows between
locations (Bjørnstad and Grenfell, 2008; Wesolowski et al., 2017). Let

Ĩi,t = Ii,t +
Ni

∑
j mj,i

Ij,t
Nj

Ni +
∑

j mj,i
(S.1)

Si,t+1 = Si,t − βSi,t
Ĩi,t
Ni

(S.2)

Ii,t+1 = Ii,t + βSi,t
Ĩi,t
Ni

− γIi,t (S.3)

Ri,t+1 = Ri,t + γIi,t (S.4)

where mj,i is the number of commuters going from location j to location i each period
and all other variables are as in the classical SIR model (Kermack and McKendrick,
1927). We take German counties as the locations in our models. We assume γ = 1/7
(because the incubation period is 7 days on average, and much of the transmission is
pre-symptomatic) and R0 = β/γ = 2.5. We assume the initial counts of infected to
correspond to the reported cases by county on February 29 2020. We simulate the model
for 60 time periods, assuming that after time period 22, all cross-county commuting flows
are shut down to simulate measures taken by the German government.

We have tried other parametrizations of the SIR model and we get similar results
provided that the epidemic is not allowed to evolve too close to the long-run equilibrium
(which, when migration flows are eventually shut down, is the same for each county
and hence, would not generate a discontinuity). The continued growth in cases over
the summer of 2020 suggests that assuming that the epidemic did not attain long-run
equilibrium is reasonable. The magnitude of the case counts resulting from the epidemic
vary widely between parametrizations. We view this exercise not as an attempt to model
the COVID-19 epidemic in Germany but to provide an illustration that mobility patterns
can generate discontinuities in the spread of an epidemic without there being essential
discontinuities in the underlying resistance of the population.
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(a) Originating in the West (b) Originating in the East

(c) Originating in the West & > 50 km (d) Originating in the East & > 50 km

Figure S.1. Major commuting flows (at least 1,000 people) by origin
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Figure S.2. Spatial distribution of simulated COVID-19 cases in Germany
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S2. ADDITIONAL FIGURES

Figure S.3 illustrates the time-series of daily cases in Germany from Jan 27 2020 (week
5) until December 13 2020 (week 50). Week 17 is the last week during which reported
cases exceeded 2,000 on at least one day Coronavirus-related travel restrictions were
progressively relaxed starting in May and then re-instituted in the fall. Week 37 marks
the first week in the fall wave during which reported cases exceeded 2,000 on at least
one day. Our data ends three days before the second nationwide “hard” lockdown on
December 16 2020.

Figure S.4 shows the age distribution of cases in the territory of former West and East
Germany on April 26, 2020. Cases are all positive COVID-19 tests reported by the RKI.
Severe cases display acute respiratory symptoms (including pneumonia) or have died
from COVID-19. The distribution is truncated after 79 years, as the RKI reports cases
for those aged 80 and above in a single combined category which we omit for display
purposes.
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(a) West: Cases by age
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Figure S.4. Distribution of (severe) cases by age on both sides of the former border
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S3. ADDITIONAL REGRESSION RESULTS

Table S.1. Balance tests: Microcensus 2017, MSE-optimal bandwidth

Policy change
1974 West ends universal 1990 East ends mandatory

Age interval around policy change
5 years 10 years 5 years 10 years

(1) (2) (3) (4)

Panel A. Log labour force participation

East×Treated 0.01 (0.01) 0.05*** (0.01) -0.22 (0.12) -0.09 (0.14)

WCR 95% CI [-0.03, 0.04] [0.03, 0.10] [-0.40, 0.50] [-0.34, 0.74]
BWs (hNT , hT ) 64.3, 37.2 72.3, 41.4 31.2, 48.7 42.8, 38.5

Panel B. Log unemployed

East×Treated 0.02 (0.18) -0.43 (0.25) -0.42 (0.28) 0.89* (0.40)

WCR 95% CI [-0.71, 0.55] [-1.30, 0.01] [-1.25, 0.54] [-0.47, 2.42]
BWs (hNT , hT ) 45.8, 38.9 70.0, 40.3 77.7, 48.2 43.1, 48.6

Panel C. Log full time employment

East×Treated 0.04 (0.07) 0.00 (0.04) -0.02 (0.06) 0.01 (0.06)

WCR 95% CI [-0.39, 0.28] [-0.23, 0.09] [-0.23, 0.18] [-0.23, 0.20]
BWs (hNT , hT ) 37.0, 77.0 35.5, 51.1 65.4, 53.1 63.7, 51.9

Panel D. Log public employment

East×Treated -0.19 (0.18) -0.14 (0.11) -0.24 (0.26) -0.12 (0.39)

WCR 95% CI [-1.02, 0.55] [-0.59, 0.59] [-1.62, 0.58] [-0.65, 1.69]
BWs (hNT , hT ) 35.4, 44.1 36.8, 55.0 37.1, 35.4 37.4, 55.5

Panel E. Log commuters

East×Treated -0.04 (0.22) -0.17 (0.19) -0.41 (0.24) -0.21*** (0.06)

WCR 95% CI [-1.42, 0.99] [-1.38, 0.57] [-1.30, 0.57] [-0.48, -0.04]
BWs (hNT , hT ) 56.8, 32.9 51.6, 34.2 39.7, 52.0 50.4, 44.6

Note: All coefficient estimates are based on a RD-DD specification with a MSE-optimal bandwidth
(Calonico et al., 2020) computed separately for the treated (hT ) and untreated cohorts (hNT ). Pilot
bandwidths for the bias correction are not reported. The number of observations differs per cohort,
depending on the bandwidth. Conventional standard errors clustered on states level are reported in
parentheses. The wild cluster bootstrap confidence intervals (Cameron et al., 2008) are based on 99,999
replications where the null of no difference in discontinuities has been imposed.
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Table S.2. Balance tests: Health status 2016, MSE-optimal bandwidth

Policy change
1974 West ends universal 1990 East ends mandatory

Age interval around policy change
5 years 10 years 5 years 10 years

(1) (2) (3) (4)

Panel A. Log all-cause mortality

East×Treated -0.18 (0.10) -0.05 (0.15) -0.25 (0.68) -1.73** (0.66)

WCR 95% CI [-0.63, 0.04] [-0.64, 0.75] [-2.51, 3.33] [-2.89, 1.20]
BWs (hNT , hT ) 60.6, 46.3 35.7, 40.7 61.7, 20.5 35.7, 35.7

Panel B. Log mortality from infectious diseases

East×Treated -0.74 (1.27) 0.56 (1.11) – –

WCR 95% CI [-7.19, 1.15] [-5.30, 3.33]
BWs (hNT , hT ) 49.6, 46.7 39.6, 54.1

Panel C. Log mortality from respiratory diseases

East×Treated -1.17 (1.54) 0.03 (1.60) 0.83 (0.92) 2.11* (1.00)

WCR 95% CI [-8.22, 1.38] [-7.19, 4.00] [-0.58, 5.50] [0.74, 7.27]
BWs (hNT , hT ) 54.5, 53.8 58.2, 40.3 45.0, 81.3 43.3, 58.2

Panel D. Log hospitalizations

East×Treated 0.08 (0.05) 0.05 (0.07) -0.20*** (0.04) -0.11* (0.05)

WCR 95% CI [-0.27, 0.14] [-0.37, 0.17] [-0.34, -0.06] [-0.37, 0.02]
BWs (hNT , hT ) 53.5, 34.7 47.4, 32.9 51.5, 47.5 46.2, 47.4

Panel E. Log hospitalizations for infectious diseases

East×Treated -0.02 (0.14) -0.06 (0.08) 0.20** (0.07) -0.13 (0.12)

WCR 95% CI [-0.26, 0.76] [-0.39, 0.32] [-0.12, 0.46] [-0.98, 0.32]
BWs (hNT , hT ) 33.0, 39.5 39.9, 48.0 48.4, 51.0 54.0, 39.9

Panel F. Log hospitalizations for respiratory diseases

East×Treated 0.05 (0.05) 0.13 (0.10) -0.14 (0.12) -0.05 (0.06)

WCR 95% CI [-0.10, 0.35] [-0.20, 0.84] [-0.46, 0.58] [-0.26, 0.29]
BWs (hNT , hT ) 26.6, 47.3 30.4, 45.9 42.9, 32.6 55.0, 30.4

Note: All coefficient estimates are based on a RD-DD specification with a MSE-optimal bandwidth
(Calonico et al., 2020) computed separately for the treated (hT ) and untreated cohorts (hNT ). Pilot
bandwidths for the bias correction are not reported. The number of observations differs per cohort,
depending on the bandwidth. Conventional standard errors clustered on states level are reported in
parentheses. The wild cluster bootstrap confidence intervals (Cameron et al., 2008) are based on 99,999
replications where the null of no difference in discontinuities has been imposed.
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Table S.4. Discontinuities in other variables, part I

The bandwidth is
CER opt. MSE opt. 30 km 60 km

Panel A. Disposable income per capita

East -0.11*** (0.03) -0.09*** (0.03) -0.15 (0.1) -0.07 (0.07)

Wild 95% CI [-0.16, -0.05] [-0.15, -0.04] [-0.29, -0.01] [-0.18, 0.04]
BWs (h, b) 33.3, 92.3 38.1, 92.3 30, 30 60, 60

Panel B. Population density

East -0.41 (0.44) -0.49 (0.47) -1.59** (0.75) -0.31 (0.64)

Wild 95% CI [-1.19, 0.36] [-1.33, 0.35] [-2.85, -0.34] [-1.31, 0.63]
BWs (h, b) 38.4, 104.1 44, 104.1 30, 30 60, 60

Panel C. Area

East 0.54 (0.37) 0.73*** (0.23) -0.6 (0.62) 0.56 (0.66)

Wild 95% CI [-0.09, 1.19] [0.37, 1.1] [-1.57, 0.44] [-0.54, 1.66]
BWs (h, b) 41.8, 100.3 47.9, 100.3 30, 30 60, 60

Panel D. Percent older than 60

East 2.81*** (0.74) 2.61*** (0.75) 4.68*** (1.38) 2.05 (1.25)

Wild 95% CI [1.65, 4.03] [1.3, 3.84] [2.43, 6.95] [0, 4.13]
BWs (h, b) 36.8, 86.3 42.1, 86.3 30, 30 60, 60

Panel E. Percent younger than 35

East -4.58*** (1.23) -5.43*** (1.36) -5.08*** (1.33) -3.93** (1.94)

Wild 95% CI [-6.72, -2.4] [-7.78, -3.03] [-7.48, -2.68] [-7.08, -0.72]
BWs (h, b) 41.8, 103.5 47.8, 103.5 30, 30 60, 60

Panel F. Days since first case

East -1.38 (2.99) -1.87 (2.92) -21.18*** (4.49) -1.14 (2.88)

Wild 95% CI [-6.53, 3.5] [-6.79, 3.1] [-28.45, -13.92] [-5.99, 3.7]
BWs (h, b) 33.8, 65.2 38.7, 65.2 30, 30 60, 60

Note: All coefficient estimates are bias-corrected (Calonico et al., 2014). The RD bandwidths for the
point estimate (h) and bias corrections (b) are indicated in each column. CER and MSE optimal band-
widths use the selection rules developed in Calonico et al. (2020). Robust standard errors clustered on
states are reported in parentheses. The Wild 95% confidence intervals use a cluster variant of the itera-
tive bootstrap proposed by Bartalotti et al. (2017) with 99,999 replications for each bias correction and
1,000 replications to obtain the empirical distribution of the bias-corrected estimator.
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Table S.5. Discontinuities in other variables, part II

The bandwidth is
CER opt. MSE opt. 30 km 60 km

Panel A. Age-adjusted overall death rate per million

East 0 (0.02) 0 (0.02) 0 (0.03) -0.03** (0.01)

Wild 95% CI [-0.03, 0.02] [-0.04, 0.03] [-0.05, 0.05] [-0.05, -0.01]
BWs (h, b) 39.7, 95.9 45.4, 95.9 30, 30 60, 60

Panel B. Age-adjusted infectious diseases death rate per million

East 4.4*** (1.13) 3.86*** (0.88) 5.08*** (1.57) 3.84*** (1.03)

Wild 95% CI [2.69, 6.04] [2.48, 5.32] [2.4, 7.69] [2.16, 5.57]
BWs (h, b) 23.1, 56.5 26.5, 56.5 30, 30 60, 60

Panel C. Age-adjusted respiratory diseases death rate per million

East 5.84*** (1.49) 5.17*** (1.16) 5.92*** (2.21) 4.94*** (1.36)

Wild 95% CI [3.66, 8.02] [3.25, 6.93] [1.99, 9.75] [2.69, 7.17]
BWs (h, b) 23.5, 53.9 26.9, 53.9 30, 30 60, 60

Panel D. Age-adjusted overall hospitalization rate per million

East 0.1** (0.05) 0.02 (0.07) 0.25*** (0.1) 0.04 (0.03)

Wild 95% CI [0.02, 0.17] [-0.09, 0.13] [0.1, 0.4] [-0.01, 0.08]
BWs (h, b) 25.2, 70 28.9, 70 30, 30 60, 60

Panel E. Age-adjusted infectious diseases hospitalization rate per million

East 0.05 (0.06) 0.1 (0.08) 0.12 (0.21) -0.11 (0.08)

Wild 95% CI [-0.06, 0.16] [-0.04, 0.23] [-0.22, 0.46] [-0.25, 0.03]
BWs (h, b) 53.1, 135.4 60.8, 135.4 30, 30 60, 60

Panel F. Age-adjusted respiratory diseases hospitalization rate per million

East -0.01 (0.06) -0.01 (0.05) 0.12 (0.14) 0.02 (0.04)

Wild 95% CI [-0.1, 0.09] [-0.1, 0.07] [-0.09, 0.34] [-0.04, 0.08]
BWs (h, b) 27.9, 65.1 31.9, 65.1 30, 30 60, 60

Note: All coefficient estimates are bias-corrected (Calonico et al., 2014). The RD bandwidths for the
point estimate (h) and bias corrections (b) are indicated in each column. CER and MSE optimal band-
widths use the selection rules developed in Calonico et al. (2020). Robust standard errors clustered on
states are reported in parentheses. The Wild 95% confidence intervals use a cluster variant of the itera-
tive bootstrap proposed by Bartalotti et al. (2017) with 99,999 replications for each bias correction and
1,000 replications to obtain the empirical distribution of the bias-corrected estimator.
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Table S.6. Discontinuity in cases with controls

Dependent variable: Log(1+Cases/Million)

The bandwidth is
CER opt. MSE opt. 30 km 60 km

Panel A. No controls

East -1.11*** (0.36) -0.76*** (0.25) -1.74*** (0.29) -1.27*** (0.29)

Wild 95% CI [-1.6, -0.63] [-1.19, -0.35] [-2.23, -1.3] [-1.75, -0.79]
BWs (h, b) 44.4, 106.4 50.9, 106.4 30, 30 60, 60

Panel B. Population density

East -1.18** (0.46) -0.96** (0.42) -1.66*** (0.31) -1.19*** (0.34)

Wild 95% CI [-1.82, -0.56] [-1.53, -0.4] [-2.14, -1.14] [-1.73, -0.65]
BWs (h, b) 38, 94.4 43.6, 94.4 30, 30 60, 60

Panel C. Disposable income p.c.

East -1.2** (0.47) -1.07** (0.42) -1.66*** (0.29) -1.26*** (0.29)

Wild 95% CI [-1.86, -0.55] [-1.62, -0.51] [-2.1, -1.21] [-1.74, -0.78]
BWs (h, b) 38.3, 98.8 43.9, 98.8 30, 30 60, 60

Panel D. Population density and disposable income p.c.

East -1.18** (0.46) -0.96** (0.42) -1.66*** (0.31) -1.19*** (0.34)

Wild 95% CI [-1.83, -0.51] [-1.54, -0.37] [-2.18, -1.13] [-1.73, -0.64]
BWs (h, b) 38, 94.4 43.6, 94.4 30, 30 60, 60

Panel E. Percent younger 35 and percent older than 60

East -0.99*** (0.38) -0.73** (0.29) -1.58*** (0.3) -1.25*** (0.29)

Wild 95% CI [-1.51, -0.5] [-1.21, -0.24] [-2.04, -1.1] [-1.75, -0.75]
BWs (h, b) 42.5, 101.6 48.6, 101.6 30, 30 60, 60

Panel F. Days since first case

East -1.2** (0.52) -1.08** (0.46) -1.16*** (0.3) -1.26*** (0.31)

Wild 95% CI [-1.92, -0.49] [-1.67, -0.46] [-1.65, -0.66] [-1.79, -0.75]
BWs (h, b) 39.6, 117.6 45.3, 117.6 30, 30 60, 60

Panel G. All of the above

East -1.29*** (0.42) -1.21*** (0.39) -1.26*** (0.3) -1.17*** (0.35)

Wild 95% CI [-1.89, -0.66] [-1.79, -0.65] [-1.76, -0.77] [-1.72, -0.59]
BWs (h, b) 38.1, 85.6 43.6, 85.6 30, 30 60, 60

Note: All coefficient estimates are bias-corrected (Calonico et al., 2014). The RD bandwidths for the
point estimate (h) and bias corrections (b) are indicated in each column. CER and MSE optimal band-
widths use the selection rules developed in Calonico et al. (2020). Robust standard errors clustered on
states are reported in parentheses. The Wild 95% confidence intervals use a cluster variant of the itera-
tive bootstrap proposed by Bartalotti et al. (2017) with 99,999 replications for each bias correction and
1,000 replications to obtain the empirical distribution of the bias-corrected estimator.
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Table S.7. Bivariate OLS regressions

Dependent variable: Log(1+Cases/Million)

West East All
(1) (2) (3)

Panel A. Disposable income p.c.

Coefficient (Std. Err.) 2.36** (0.74) 3.52 (2.02) 3.38*** (0.61)

Wild 95% CI [0.76, 4.98] [-1.40, 7.13] [1.76, 4.92]

Panel B. Population density

Coefficient (Std. Err.) -0.03 (0.08) 0.16*** (0.02) 0.09 (0.07)

Wild 95% CI [-0.15, 0.26] [0.09, 0.21] [-0.07, 0.29]

Panel C. Percent older than 60

Coefficient (Std. Err.) -0.06** (0.02) -0.03 (0.04) -0.09*** (0.02)

Wild 95% CI [-0.12, -0.01] [-0.16, 0.23] [-0.13, -0.05]

Panel D. Percent younger than 35

Coefficient (Std. Err.) 0.03 (0.02) 0.03 (0.02) 0.07*** (0.01)

Wild 95% CI [-0.01, 0.08] [-0.01, 0.11] [0.04, 0.10]

Panel E. Age-adjusted overall death rate per million

Coefficient (Std. Err.) -3.17** (1.30) -3.51** (0.97) -4.02*** (1.02)

Wild 95% CI [-6.85, -0.65] [-7.35, -1.32] [-6.58, -1.86]

Panel G. Age-adjusted infectious diseases death rate per million

Coefficient (Std. Err.) -0.12*** (0.03) -0.08 (0.25) -0.15*** (0.03)

Wild 95% CI [-0.42, 0.17] [-0.91, 0.46] [-0.47, 0.26]

Panel H. Age-adjusted respiratory diseases death rate per million

Coefficient (Std. Err.) -0.10*** (0.03) -0.22 (0.42) -0.13*** (0.02)

Wild 95% CI [-0.32, 0.09] [-2.25, 1.47] [-0.35, 0.11]

Panel I. Age-adjusted hospitalization rate per million

Coefficient (Std. Err.) -0.62 (0.64) -2.00* (0.81) -1.49* (0.72)

Wild 95% CI [-2.06, 1.26] [-4.31, 1.65] [-3.30, 0.22]

Panel J. Age-adjusted infectious diseases hospitalization rate per million

Coefficient (Std. Err.) -0.01 (0.03) -1.33** (0.30) -0.05 (0.04)

Wild 95% CI [-2.55, 1.75] [-2.25, 0.13] [-1.87, 1.78]

Panel K. Age-adjusted respiratory diseases hospitalization rate per million

Coefficient (Std. Err.) -0.03 (0.02) -1.37*** (0.13) -0.06* (0.03)

Wild 95% CI [-2.10, 1.71] [-1.59, -0.80] [-2.26, 2.08]

Observations 324 76 400

Note: The table reports results from bivariate ordinary least squares regressions for the samples indicated
in the column headers. Conventional standard errors clustered on states level are reported in parentheses.
The wild cluster bootstrap confidence intervals (Cameron et al., 2008) are based on 99,999 replications
where the null of no correlation between the two variables has been imposed.
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