
Discovering Econometrics with R: Day 1

Richard Bluhm

August 5, 2013

What is R?

I R is a statistical programming language based on S
I It’s open source and completely free! Yes, free!
I R 1.0 was released in 2000, now version 3.0.1 in Jun 2013
I Very quickly becoming a popular alternative to expensive

proprietary software like SAS, Stata, EViews and Matlab
I Massive online user base contributing new programs every day
I Heavily used in Biostatistics, Medicine and Computing
I Quickly becoming more popular in Econometrics and the

Social Sciences (particularly in the US)
I Somewhat dated, but extremely flexible language, ability to

interface with most major languages (C++, Python, etc.) and
database types (SQL, Hana, Hadoop, etc.).

What can you do with R?

I Load and manipulate data from almost any source
I Make descriptive statistics and graphs
I Fit all sorts of statistical and econometric models (including

our favorite regression models)
I Make advanced graphs of statistical results
I Easily write simulations for statistical or other types of models
I Load user-written packages that implement new things
I Use a fully fledged matrix/ vector language
I Write your own functions/ programs and share them
I R is possibly the most flexible fully-developed statistical

language existing today (but new ones coming e.g. Julia)
I R is open source so you can learn from other people’s code

How to install R?

I Get the latest R version for your operating system (runs on all
major platforms) from: http://www.r-project.org

I Install the software, now you have R for the console without a
Graphical User Interface (GUI)/ Integrated Development
Environment (IDE)

I Get the latest version of RStudio for your operating system
(runs on all major platforms and is our recommended IDE)
from: http://www.rstudio.com

I Install RStudio, now you have a pretty GUI and very sleek
development platform

I Note to Linux users: you may have R available directly from
your package manager. On Ubuntu type sudo apt-get

install r-base at the terminal.

The look and feel of R and RStudio

Script/ Code
Window

Objects in
Workspace

Browser/
Plots/ Help

Console
Output

A few more points before we get started

I R is an object-oriented programming language build around
specific and generic functions. It relies on the functional
programming paradigm.

I For example, the function lm() which we will use throughout
the course estimates a linear model and then saves lots of
objects that other functions can use afterwards

I Most R functions are polymorphic generic functions: they
change depending on what objects they are being called on

I For example, summary() gives very different output
depending on what you ask it to summarize

I Every operation is a function. Even simple math (e.g. 1+1)
and matrix calculations (e.g. X’) are in fact functions.

A first look at using R

I Open RStudio and just type simple math commands at the
console prompt

I Try 1+1

I Try a <- 1, b <- 2, and a + b

I Now use the code/ scripting window and type the same things
on new lines

I Two important keyboard shortcuts:

I CTRL + SHIFT + ENTER: run all lines
I CTRL + ALT + B: run until current line
I More here http://www.rstudio.com/ide/docs/using/

keyboard_shortcuts

I Verify that the console output is the same, look at the two
new objects in the workspace

Basic R objects

I R knows five types of atomic objects:

I numeric [e.g. 1.23456]
I integer [e.g. 1, typed as 1L]
I complex [e.g. a + bi, real + imaginary]
I boolean: logical [e.g. TRUE or FALSE, T or F]
I strings: character [e.g. “Hello World!”]

I The data types collecting these atomic objects are:

I vectors: several elements of a single atomic type (R does not
have scalars, they are 1-element vectors)

I matrices: collections of equal-length vectors
I factors: categorical data (ordered, unordered)
I data frames: a data set, collections of equal-length vectors of

different types
I lists: collections of unequal-length vectors of different types

Some notation

I When you see the > at the beginning of a line, that means I
am showing you the code and the console output from that
code on the next line(s). Do not copy the > sign when you
follow the examples. When I omit the > sign, you can copy
the line(s) directly.

I Assignment: We will not use the equal sign (=) to assign
content to a new vector/ variable etc.; somewhat eclectically
R uses <- to assign something on the right to something the
left. We reserve the equal sign for input to functions and
logical comparisons (e.g. double equal).1

I Concatenation/ Combining: c(1, 2, 3) creates a vector
that combines the element 1, 2, and 3. This is probably the
most often used R function after the assignment function.

1Click here to learn why.

Vectors of atomic objects

> x <- c(1.1, 2.2, 3.3)

> is.numeric(x)

[1] TRUE

> x <- c(1L, 2L, 3L)

> is.integer(x)

[1] TRUE

> x <- c(1+0i, 2+4i, 3+6i)

> is.complex(x)

[1] TRUE

> x <- c(TRUE, FALSE, TRUE)

> is.logical(x)

[1] TRUE

> x <- c("I", "like", "R")

> is.character(x)

[1] TRUE

What data type is this vector? x <- c("R", 2, FALSE)

Operations with vectors (I)

You can call most functions on a vector, such as functions for the
type of vector, like is.numeric() or most statistical functions.

x <- 1:10

mean(x)

sd(x)

var(x)

length(x)

sum(x)

We can and often will work with subsets of vectors:

> x[1:5]

[1] 1 2 3 4 5

> mean(x[1:5])

[1] 3

Operations with vectors (II)

We can do all sorts of simple math with vectors. Note that R by
default does vector operations element-wise, for vector algebra we
have to use a different notation (advanced use).

> a <- 1:10

> b <- 11:20

> a + b

[1] 12 14 16 18 20 22 24 26 28 30

Recycling: if some vectors are too short, many operations make
them equal length by repeating the shorter vector(s)

> a <- c(1,1,1,1)

> b <- c(2,4)

> a * b

[1] 2 4 2 4

Matrices (I)

Matrices are collections of vectors. They have dimensions r × k
where r is the number of rows and k is the number of columns.
The input vectors need to be of equal length and equal type.

> x1 <- 1:3; x2 <- 4:6; x3 <- 7:9

> x <- cbind(x1,x2,x3)

> x

x1 x2 x3

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> dim(x) # returns r and k

[1] 3 3

> length(x) # returns r times k

[1] 9

Matrices (II)

Matrices are built up column-wise. We can take a long vector and
break it up into rows and columns.

> mat <- matrix(1:8, nrow = 2, ncol = 4)

> mat

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

Or as in the example before, we combine existing vectors
column-wise cbind() or row-wise rbind():

> x1 <- 1:3; x2 <- 4:6

> x <- cbind(x1,x2); dim(x)

[1] 3 2

> x <- rbind(x1,x2); dim(x)

[1] 2 3

Matrices (III)

Simple math operators also perform all matrix operations
element-wise. For matrix algebra we need to use special functions,
such as %*% for matrix multiplication or t() for the transpose.

> m <- matrix(1:9, 3, 3)

> m

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> m*m

[,1] [,2] [,3]

[1,] 1 16 49

[2,] 4 25 64

[3,] 9 36 81

Factors (I)

Factors store categorical data that may be ordered or unordered.
Like “yes” and “no”, or “disagree”, “neutral” and “agree”, or
“BMW”, “Mercedes”, and “Volkswagen”.

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x

[1] yes yes no yes no

Levels: no yes

> table(x)

x

no yes

2 3

Factors (II)

Often factors have an intrinsic order (for example a Likert scale).
The levels option makes sure the factors are not ordered on first
come first serve basis, but how you want. Some statistical
functions require the use of ordered() instead of factor().

> x <- factor(c("agree", "agree", "neutral", "disagree"),

+ levels = c("disagree", "neutral", "agree"))

> x

[1] agree agree neutral disagree

Levels: disagree neutral agree

> unclass(x) # shows how it’s really stored

[1] 3 3 2 1

attr(,"levels")

[1] "disagree" "neutral" "agree"

Data frames

Data frames are the most important data type for statistical
analysis. They can hold all atomic types provided they are in
vectors of equal length. Think of an excel sheet/ table that records
different characteristics for different units of observations.

> x <- data.frame(id = 1:5, male = c(T, T, F, F, F),

+ age = c(29, 45, 23, 62, 59))

> x

id male age

1 1 TRUE 29

2 2 TRUE 45

3 3 FALSE 23

4 4 FALSE 62

5 5 FALSE 59

Lists

Unlike data frames (which are special lists), a list can hold any
type of vector consisting of different atomic elements, no matter
what length.

mylist <- list(beers = c("Pils", "Lager",

+ "Pale Ale", "Dark Ale"),

+ cars = c("BMW", "Mercedes", "Volkswagen"))

> mylist

$beers

[1] "Pils" "Lager" "Pale Ale" "Dark Ale"

$cars

[1] "BMW" "Mercedes" "Volkswagen"

While lists are extremely useful, we will try to avoid lists in this
course where possible.

Naming objects

All R data objects can be assigned names with the names(),
colnames() or rownames() functions. Typically we will not name
every element of a vector or name each row and column of a
matrix. For data frames, however, column names are really
important. They correspond to the variable name. For example:

> x <- data.frame(id = 1:5, male = c(T, T, F, F, F),

+ age = c(29, 45, 23, 62, 59))

> names(x) #print names

[1] "id" "male" "age"

> # let’s rename the first two

> names(x) <- c("personID", "mgender", "age")

> names(x)

[1] "personID" "mgender" "age"

Missing and other special values

R has a few special symbols. Most importantly: missing values.
Missing values can be of any atomic type: character, number, and
so on. However, R also has designated signs for “not a number”,
“positive infinity”, and “negative infinity”. For example:

> x <- 1 / 0

> x

[1] Inf

> log(0)

[1] -Inf

> x <- c(1, NA, 3, 4)

> is.na(x)

[1] FALSE TRUE FALSE FALSE

> x <- 0 / 0

> x

[1] NaN

What is a function?

Just like in math, e.g. y = f (x), an R function receives one or
multiple inputs, then does something with these inputs and returns
something. For example, if we look at the help file (?mean) for the
function mean(), it tell us what this function returns (duh) the
arithmetic mean and what it expects as an input.

Generally the (somewhat cryptic) documentation provides:

I the name of the function and the package where it is located
I a short description of what it does
I a short description of the syntax
I a list of the required and optional arguments
I what the function returns and the data type returned
I references, other links and some example usage

Documentation for mean()

Your first R function

In this course we will mostly use built-in functions, but
programming R functions is incredibly easy. Let’s write a function
that computes the mean of a vector (assuming there are no
missing values). All we need to do is this:

Define the function

mymean <- function(x) {
mean <- sum(x)/length(x)

return(mean)

}
Create a new vector and evaluate

x <- c(1, 2, 3)

mymean(x)

It will give the same results as mean() and now shows up in your
workspace on the top right.

Logical Operators (I)

Operator Description

< Test for less than

<= Test for less than or equal to

> Test for greater than

>= Test for greater than or equal to

== Test for equality

!= Test for if not equality

!x Boolean negation, for vectors

x | y Boolean x OR y, for vectors

x & y Boolean x AND y, for vectors

x || y Boolean x OR y, for scalars

x && y Boolean x AND y, for scalars

isTRUE(x) Boolean test if X is TRUE, for scalars

Logical Operators (II): numeric input

> x <- c(1,2,3)

> y <- c(3,4,5)

> x < y # element-by-element comparison

[1] TRUE TRUE TRUE

> x <= y

[1] TRUE TRUE TRUE

> x > y

[1] FALSE FALSE FALSE

> x == y

[1] FALSE FALSE FALSE

> x != y

[1] TRUE TRUE TRUE

> mean(x) == mean(y) # also works with results

[1] FALSE

Logical Operators (III): boolean input

> x <- c(TRUE, FALSE, TRUE)

> y <- c(TRUE, TRUE, TRUE)

> !x # negation, set theory: complement

[1] FALSE TRUE FALSE

> x | y # x or y is true, set theory: union

[1] TRUE TRUE TRUE

> x & y # x and y is true, set theory: intersection

[1] TRUE FALSE TRUE

> isTRUE(y) # aha, what’s going on here?

[1] FALSE

> x[2] && y[2] # scalar

[1] FALSE

> x[2]==T || y[2]==F # scalar, can stack conditions

[1] FALSE

Before we load data I: setting the working dir

When you open R and RStudio it will work in a default directory.
To see this directory, type

> getwd()

[1] "/home/richard"

To specify a new directory, type (for example)

setwd("/home/richard/Desktop")

Forwards slashes are familiar to UNIX/MAC users. On Windows
you also have use forward slashes or escape the backwards slashes
to set a path like "C:\\Users\\Name\\". I recommend you make
a new folder on your desktop called “summerschool” and place all
materials there. Then set this as your working directory.

Before we load data II: clearing objects and saving work

You may want to start each R script with a clean slate. To empty
the memory and remove all objects, type

> rm(list = ls())

To save your current R script (*.R), just click on “save” in the top
left of RStudio. To save one or multiple objects (e.g. data frames)
from your current workspace as an *.Rdata file, type

> x <- c(1, 2, 3)

> save(x, file = "X.RData")

You can save more than one object by separating them with
commas, e.g. save(x, y, file =...). To load them again, use

> load(file = "X.RData")

Let’s start a new script and load a data set

We’ll now work through our first example with a real data set and
save our work in the end. You can open a new R script by clicking
on the plus button or CTRL+SHIFT+N. Then copy and paste this
code while filling in your working directory:

In class example, day 1

Clear workspace

rm(list=ls())

Set working dir, your path here

setwd("/home/richard/Desktop/summerschool/")

Loading data from CSV files

Typically we do not want to create a data frame by hand but load
data from a comma-separated text file or other formats. In this
course we will mostly use CSV or Rdata files, but R can read lots
of formats.

> url <- "http://www.stern.nyu.edu/~wgreene/Text/"

> df <- read.csv(paste0(url,"Edition7/TableF4-3.csv"))

> df <- df[,1:5]

> head(df,5)

BOX MPRATING BUDGET STARPOWR SEQUEL

1 19167085 4 28.0 19.83 0

2 63106589 2 150.0 32.69 1

3 5401605 4 37.4 15.69 0

4 67528882 3 200.0 23.62 1

5 26223128 2 150.0 19.02 0

The str() and summary() functions

When we load a data set, the first thing we typically want to know
is what data is inside and how it has been recorded. Here, the
str() and summary() functions are extremely useful.

> str(df[,1:3])

’data.frame’: 62 obs. of 3 variables:

$ BOX : int 19167085 63106589 5401605 67528882 ...

$ MPRATING: int 4 2 4 3 2 3 3 3 3 4 ...

$ BUDGET : num 28 150 37.4 200 150 37 130 80 40 ...

> summary(df[,1:3])

BOX MPRATING BUDGET

Min. : 511920 Min. :1.000 Min. : 5.00

1st Qu.: 6956492 1st Qu.:2.000 1st Qu.: 30.50

Median :16930926 Median :3.000 Median : 37.40

Mean :20720651 Mean :2.968 Mean : 53.29

3rd Qu.:26696144 3rd Qu.:4.000 3rd Qu.: 60.00

Max. :70950500 Max. :4.000 Max. :200.00

Subsetting data frames

Much like vectors, we can subset a data frame by specifying which
rows and columns we would like to work with. We always need to
specify two dimensions or leave one blank. Matrix subsetting works
just the same way. Since the variables in data frames have names,
we can refer to them directly:

> df[1:5,"BOX"]

[1] 19167085 63106589 5401605 67528882 26223128

> df$BOX[1:5]

[1] 19167085 63106589 5401605 67528882 26223128

> df[1:5,1]

[1] 19167085 63106589 5401605 67528882 26223128

In each case, we ask R to return the first five rows of the variable
“BOX” as a numeric vector.

Generating and replacing variables

The box office returns are measured in dollars. Suppose we would
like to change the scale to millions of dollars instead. We would
need to either replace “BOX” with its rescaled counterpart or
create a new variable.

> df$BOXM <- df$BOX / 10^6

> df[,"BOXM"] <- df[,"BOX"] / 10^6

> summary(df[,"BOXM"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5119 6.9560 16.9300 20.7200 26.7000 70.9500

Both lines do the same with a different syntax. Note how you
always need to specify the data frame you are using even on the
right hand side. Otherwise R will search for a vector named
“BOX” in the workspace and not in the data frame!

Recoding factor variables

The variable “MPRATING” is an integer in the raw data, but in
fact signifies the MPAA rating of the movie. The codes are 1=G,
2=PG, 3=PG13, and 4=R. We need to create a new factor.

> df$MPAA <- factor(df$MPRATING, levels = c(1,2,3,4),

+ labels = c("G", "PG", "PG13", "R"))

> summary(df$MPAA)

G PG PG13 R

2 15 28 17

For tables, we sometimes want to split up other variables.

> df$BOXcat <- cut(df$BOXM, breaks=c(0,10,20,30,Inf))

> summary(df$BOXcat)

(0,10] (10,20] (20,30] (30,Inf]

19 17 14 12

Simple tables

R has many tabulating capabilities. For now, I am only introducing
three basic types: 1. one-way frequency tables, 2. two-way
frequency tables and 3. tables of proportions

> table(df$MPAA)

G PG PG13 R

2 15 28 17

> table(df$BOXcat,df$MPAA)

G PG PG13 R

(0,10] 0 3 8 8

(10,20] 2 4 8 3

(20,30] 0 4 6 4

(30,Inf] 0 4 6 2

> prop.table(table(df$BOXcat))

(0,10] (10,20] (20,30] (30,Inf]

0.3064516 0.2741935 0.2258065 0.1935484

Graphing distributions: Histograms

hist(df$BOXM, main="Histogram of Box Office Returns",

xlab="Box Office Returns (in mil. $)")

Histogram of Box Office Returns

Box Office Returns (in mil. $)

Fr
eq

ue
nc

y

0 20 40 60 80

0
5

10
15

Graphing distributions: Bar plots (I)

freq <- table(df$BOXcat)

barplot(freq, main="Distribution of Box Office Returns",

xlab="Groups of Box Office Returns (in mil. $)")

(0,10] (10,20] (20,30] (30,Inf]

Distribution of Box Office Returns

Groups of Box Office Returns (in mil. $)

0
5

10
15

Graphing distributions: Bar plots (II)
df$SEQUEL <- factor(df$SEQUEL, levels = c(0,1),

labels = c("No Sequel","Sequel"))

freq <- table(df$SEQUEL,df$BOXcat)

barplot(freq, main="Box Office Returns over Sequels",

xlab="Groups of Box Office Returns (in mil. $)",

legend = rownames(freq))

(0,10] (10,20] (20,30] (30,Inf]

Sequel
No Sequel

Distribution of Box Office Returns over Sequels

Groups of Box Office Returns (in mil. $)

0
5

10
15

Graphing distributions: Two-way graphs

plot(df$BUDGET, df$BOXM, main="Returns vs Budget",

xlab="Budget", ylab="Returns ", pch=19)

0 50 100 150 200

0
10

20
30

40
50

60
70

Returns vs Budget

Budget

R
et

ur
ns

Saving the example

Let’s save the code we have written so far by clicking on “save” in
RStudio. You may call the file “Example1.R”.

You may also want to save the data frame we have created, so
that next time you don’t have to run the entire script to continue
working with the movie data in another example. Just add this to
the bottom of your file

> save(df, file = "MovieData.RData")

run and save the script again. Next time we can open the data
with load(file = "MovieData.RData") and the data frame df

will show up in your workspace again.

Graphing capabilities

I R has a great deal of graphing capabilities
I Most of the more advanced (and prettier) graphs come from

user-written packages like lattice or ggplot2
I For simplicity, we only use the graphing capabilities in base R,

but feel free to check out the add-ons on your own time.
I http://www.cookbook-r.com/Graphs/ has a lot of

examples for ggplot2
I http://www.statmethods.net/advgraphs/trellis.html

has some examples for the Trellis graphics system in the
lattice package

I Both packages have a dedicated book demonstrating their
capabilities

Help me!

I OMG! This is so much to take in, am I expected to know all
this by tomorrow? Short answer: No.

I Long answer: We will build up your R knowledge each day
with new applications, the learning curve in the beginning is
steep but I am there to help. Later it becomes easier.

I R can also help you, for any function just type:
help(function) or ?function

I R can show you examples, for most functions you can use:
example(function)

I Otherwise, Google it! Many people are learning R and there
are countless FAQs and tutorials out there.

I An important website for slightly more complicated questions
is http://stackoverflow.com/questions/tagged/r, it’s
for many languages but has 31,911 Q&As on R!

Homework: Part I

Write a function that returns the sample variance of a numeric
vector. Recall that the sample variance is defined as the sum of
squared deviations divided by (N − 1), that is

v̂ar(X) ≡ S2
X =

1

N − 1

N∑

i

(Xi − X̄)2

Use following shell, you may use mean(), sum() and length().
Test it by comparing your result with R’s built-in var() function.

myvar <- function(x) {
your computations

assign the final result to var: var <- something

return(var)

}

Homework: Part II (a bit harder)

I Load the full data MovieRatings data set from the web as a
*.CSV file, keep all variables and not only the first five

I Create a new factor that has hold the genre of the movie,
code 1 for animated, 2 for comedy, 3 for action and 4 for
horror flick.

I Hint: you need to create a count variable first that goes from
1 to 4 for each genre, like df$genre[df$ANIMATED == 1]

<- 1, and then recode it as a factor.
I Copy the code that creates the box office returns in millions

and the code that cuts the box office returns into four
categories (0 to < 10, 10 to < 20, 20 to < 30, and 30 to ∞).

I Make a bar graph plotting the frequency of box office returns
(the four categories) over the different genres. Name the
x-axis, title the graph and make a legend for the genres.

Homework: Part II (the graph)
Your graph should look like this:

(0,10] (10,20] (20,30] (30,Inf]

HORROR
ACTION
COMEDY
ANIMATED

Box Office Returns over Genre

Groups of Box Office Returns (in mil. $)

0
2

4
6

8
10

12
14

Optional homework

I Go to the R section of Codeschool at
http://tryr.codeschool.com

I Complete the entire TryR course

I You can do this from any computer without R being installed

I The interactive tutorial goes through most of the concepts we
covered today plus a little extra (sometimes a little less)

I If you already did that last weekend, then go to
http://www.rstudio.com/ide/docs/ and read the section
“Using RStudio” to get familiar with our favorite R IDE

Additional resources (more advanced)

I A great many R books:

I The Art of R Programming (Matloff, 2011)
I R Cookbook (Teetor, 2011)
I R in a Nutshell (Adler, 2012)

I Online tutorials and fully fledged courses:

I QuickR: http://www.statmethods.net
I Roger Peng’s Computing for Data Analysis, YouTube Playlist

and Coursera MOOC

I Econometrics with R (still lacking more econometrics books,
but lots of statistics books):

I Applied Econometrics with R (Kleiber and Zeileis, 2008)
I Applied Linear Regression (Weisberg, 2005) + An R

Companion to Applied Regression (Fox, 2011)
I Use R! Springer series on very particular fields/ techniques

Appendix: A few statistical functions in R

I mean(x) computes the mean
I sd(x) computes the sample standard deviation
I var(x) computes the sample variance
I median(x) computes the media of a vector
I quantile(x,probs=...) computes the supplied quantiles of

a vector
I summary(x) summarizes the input object (for a vector, mean,

min, max, etc.)
I cor(x,y) computes the correlation of two vectors
I cov(x,y) computes the covariance of two vectors

Appendix: A few mathematical functions in R

I Self explaining: +, -, *, /
I Exponentiation: x^p, e.g. x^2 or x^10
I abs(x) takes the absolute value of a vector
I sqrt(x) takes the square root of a vector
I log(x) takes the natural logarithm of a vector
I exp(x) exponentiates the vector
I min(x) returns the minimum of a vector
I max(x) returns the maximum of a vector
I sum(x) returns the sum of a vector
I prod(x) returns the product of a vector
I round(x, digits) rounds the vector to specified # digits
I trunc(x) truncates the vector to an integer
I cumsum(x) returns the running sum of a vector

Appendix: Control structures
Two major control statements (for and if . . . else if . . .
else), but also support for C-style control structures (while and
repeat, not covered here).

A simple for-loop:

for (i in 1:100) {
print(i)

}

A simple if-else statement:

x <- F

if (x == T) {
print("yes")

} else {
print("no")

}

Appendix: Alternatives to explicit loops

A popular alternative is to use the apply() family of functions,
here’s an abbreviation of what ??apply brings up:

apply Apply Functions Over Array Margins

by Apply a Function to a Data Frame Split by Factors

eapply Apply a Function Over Values in an Environment

lapply Apply a Function over a List or Vector

mapply Apply a Function to Multiple List or Vector Arguments

rapply Recursively Apply a Function to a List

tapply Apply a Function Over a Ragged Array

This is an R idiosyncrasy and is recommended in some books (as
apply() is sometimes faster). We focus on loops for simplicity.

Moreover, loops could be avoided with a recursive function (a
function that calls itself) but that should be reserved for problems
that actually require recursion.

